
Target Specification Rev. 1.3CC770
06

1.
0/

2.
5

-
26

.1
1.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_c

ov
er

_i
nt

er
.fm
CC770
(Stand Alone CAN Controller)

Target Specification

Revision 1.3

17.11.03

Robert Bosch GmbH
Automotive Equipment Division 8

Development of Integrated Circuits (MOS)
BOSCH - 1/84 - 17.11.03

spec_cover_inter.fm

Target Specification Rev. 1.3CC770
06

1.
0/

2.
5

-
26

.1
1.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_c

ov
er

_i
nt

er
.fm
Copyright Notice and Proprietary Information
Copyright © 2000 Robert Bosch GmbH. All rights reserved. This specification is owned by Robert
Bosch GmbH. The specification may be reproduced or copied. No part of this specification may be
modified or translated in any form or by any means without prior written permission of Robert Bosch
GmbH.

Disclaimer
ROBERT BOSCH GMBH, MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

ROBERT BOSCH GMBH, RESERVES THE RIGHT TO MAKE CHANGES WITHOUT
FURTHER NOTICE TO THE PRODUCTS DESCRIBED HEREIN. ROBERT BOSCH GMBH
DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF
ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN.
BOSCH - 2/84 - 17.11.03

Target Specification Rev. 1.3CC770
sp

ec
_i

nt
er

T
O

C
.fm
1. Introduction . 6

1.1 General Information . 6

1.2 General Data . 6

1.3 Features . 7

1.4 Functional Overview . 9

1.5 CC770 Block Diagram . 10

 1.5.1 CAN Controller . 10
 1.5.2 Intelligent Memory . 10
 1.5.3 CPU Interface Logic . 11
 1.5.4 Clockout . 11
 1.5.5 Two 8-Bit Ports . 11

2. Package Diagram . 12

3. Product Description . 13

3.1 Pin Description (PLCC 44) . 13

3.2 Hardware Reset . 16

 3.2.1 Reset values of CC770 registers . 16
 3.2.2 Reset values of CC770 output pins . 17

3.3 Software Initialization . 17

3.4 Configuration of Bit Timing . 17

3.5 Silent Mode . 18

3.6 Low Current Modes . 18

4. Functional Description . 19

4.1 CC770 Address Map . 19

4.2 Control Register (00H) . 20

4.3 Status Register (01H) . 22

 4.3.1 Status Interrupts . 24
4.4 CPU Interface Register (02H) . 25

 4.4.1 Clocking Description . 27
4.5 High Speed Read Register (04+05H) . 28

 4.5.1 Double Read Operation . 28
4.6 Global Mask - Standard Register (06-07H) . 29

4.7 Global Mask - Extended Register (08-0BH) . 29

4.8 Acceptance Filtering Implications . 31

4.9 Message 15 Mask Register (0C-0FH) . 31

4.10 ClkOut Register (1FH) . 32

4.11 Bus Configuration Register (2FH) . 34
BOSCH - 3/84 - 17.11.03

Target Specification Rev. 1.3CC770
sp

ec
_i

nt
er

T
O

C
.fm
4.12 Receive Error Counter (6FH) . 35

4.13 Transmit Error Counter (7FH) . 35

4.14 Bit Timing Registers . 36

 4.14.1 Bit Timing Overview . 36
 4.14.2 CC770 Bit Timing Definitions . 37
 4.14.3 CC770 Bit Time Segments . 37
 4.14.4 Calculation of the Bit Time . 37
 4.14.5 Example for Bit Timing at high Baudrate . 39
 4.14.6 Bit Timing Registers 0 + 1 (3FH + 4FH) . 39

4.15 Interrupt Register (5FH) . 40

4.16 Serial Reset Address (FFH) . 42

4.17 CC770 Message Objects (MO) . 42

 4.17.1 Message Object Structure . 42
 4.17.2 Control 0 + 1 Registers . 43
 4.17.3 Handling of Message Objects . 47
 4.17.4 Arbitration 0, 1, 2, 3 Registers . 48
 4.17.5 Configuration Register . 49
 4.17.6 Data Bytes . 50

4.18 Special Treatment of Message Object 15 . 51

5. Port Registers . 52

5.1 Port 1 Registers . 52

5.2 Port 2 Registers . 53

6. FLOW DIAGRAMS . 54

6.1 CC770 handling of Message Objects 1-14 (Transmit) . 54

6.2 CC770 handling of Message Objects 1-14 (Receive) . 55

6.3 CPU Handling of Message Objects 1-14 (Transmit) . 56

6.4 CPU Handling of Message Objects 1-14 (Receive) . 57

6.5 CPU Handling of Message Object 15 (Receive) . 58

7. CPU Interface Logic . 59

7.1 CPU Interface Description . 59

7.2 Parallel Interfacing Techniques . 59

7.3 Serial Interface Techniques . 60

7.4 Serial Interface Protocol . 61

7.5 Serial Control Byte . 62

8. Electrical Specification . 64

8.1 Handling Instructions . 64
BOSCH - 4/84 - 17.11.03

Target Specification Rev. 1.3CC770
sp

ec
_i

nt
er

T
O

C
.fm
8.2 Absolute Maximum Ratings . 64

8.3 DC-Characteristics . 64

8.4 CLOCKOUT Specification . 65

8.5 A.C. Characteristics . 65

 8.5.1 AC-Characteristics for 8/16-Bit Multiplexed Intel Modes (Modes 0, 1) 65
 8.5.2 A.C. Characteristics for 8-Bit Multiplexed Motorola Mode (Mode 2) 69
 8.5.3 A.C. Characteristics for 8-Bit Non-Multiplexed Asynchronous (Mode 3) . . 71
 8.5.4 A.C. Characteristics for 8-Bit Non-Multiplexed Synchronous (Mode 3) . . . 74
 8.5.5 A.C. Characteristics for Serial Interface Mode . 76
 8.5.6 Waveforms for testing . 78

9. Stepping specific errata . 79

9.1 Identification of affected devices . 79

 9.1.0.1 PLCC44 package . 79
 9.1.1 Chip on wafer . 79

9.2 Errata . 80

 9.2.1 Glitches on DSACK0# pin . 80
 9.2.1.1 Description . 80
 9.2.1.2 Work-around . 80

 9.2.2 Data corruption . 81
 9.2.2.1 Description . 81
 9.2.2.2 Work-around . 81

10. Appendix . 84

10.1 Documentation of Changes . 84

 10.1.1 Changes on Revisions . 84
 10.1.1.1 Revision 1.0 . 84
 10.1.1.2 Revision 1.1 . 84
 10.1.1.3 Revision 1.2 . 84
 10.1.1.4 Revision 1.3 . 84
BOSCH - 5/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_g

en
er

al
_f

ea
tu

re
s.

fm
1. Introduction

1.1 General Information

This specification describes the functionality of the CC770 with design step D and E.

1.2 General Data

* Not in production.

Device Name : CC770

Packages : PLCC44, MQFP 44*, Chip

Device Number : CC770E PLCC package : 0 272 230 535
CC770D PLCC package : 0 272 230 480
CC770D chip on wafer :1 279 993 117

1st Application : Replacement of AN82527
BOSCH - 6/84 - 17.11.03
spec_general_features.fm

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_g

en
er

al
_f

ea
tu

re
s.

fm
1.3 Features

• Supports CAN Protocol Version 2.0 A, B

 • Standard Data and Remote Frames

 • Extended Data and Remote Frames

• Programmable Global Mask

 • Standard Message Identifier

 • Extended Message Identifier

• 15 Message Objects of 8-byte Data Length

 • 14 Tx/Rx Buffers

 • 1 Rx Buffer with Shadow Buffer and Programmable Mask

• Programmable Bit Rate

• Flexible CPU Interface

 • 8-bit Multiplexed

 • 16-bit Multiplexed

 • 8-bit Synchronous Non-Multiplexed

 • 8-bit Asynchronous Non-Multiplexed

 • Serial Interface

• Two 8-bit Bidirectional l/O Ports

• Flexible Interrupt Structure

• Flexible Status Interface

• Programmable Clock Output

• Compatibility with the AN82527

• PLCC44, MQFP 44* Package, Chip

* Not in production.
BOSCH - 7/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_g

en
er

al
_f

ea
tu

re
s.

fm
The serial communications controller is a highly integrated device that performs serial com-
munication according to the CAN Protocol Version 2.0 A, B. The CAN protocol uses a multi-
master (contention based) bus configuration for the transfer of “communication objects”
between nodes of the network. This multi-master bus is also referred to as CSMA/CR or
Carrier Sense, Multiple Access, with Collision Resolution.

The CC770 performs all serial communication functions such as transmission and recep-
tion of messages, message filtering, transmit search, and interrupt search with minimal
interaction from the host microcontroller, or CPU. The CC770 supports the standard and
extended message frames in CAN Specification 2.0 part B. It has the capability to transmit,
receive, and perform message filtering on extended message frames with a 29-bit message
identifier. Due to the backward compatible nature of CAN Specification 2.0, the CC770 also
fully supports the standard message frames in CAN Specification 2.0 part A.

A communication object consists of an identifier along with control data segments. The con-
trol segment contains all the information needed to transfer the message. The data seg-
ment contains from 0 to 8 bytes in a single message. All communication objects are stored
in the Memory of the corresponding CAN chip for each node. A transmitting node broad-
casts its message to all other nodes on the network. An acceptance filter at each node
decides whether to receive that message. A message is accepted only if a communication
object with a matching message identifier has been set up in the CAN Memory for that
node.

CAN not only manages the transmission and reception of messages but also the error han-
dling, without any burden on the CPU.

CAN features several error detection mechanisms. These include Cyclical Redundancy
Check (CRC) and bit coding rules (“bit stuffing/destuffing“). The polynomial of the CRC has
been optimized for control applications with short messages. If a message was corrupted
by noise during transmission, it is not accepted at the receiving nodes. Current transmis-
sion status is monitored in the control segment of the appropriate communication object
within the transmitting node, automatically initiating a repeated transmission in the case of
lost arbitration or errors. CAN also has built-in mechanisms to locate error sources and to
distinguish permanent hardware failures from occasional soft errors. Defective nodes are
switched off the bus, implementing a fail-safe behaviour (thus, hardware errors will not let
defective nodes control the bus indefinitely).

The message storage is implemented in an intelligent memory, which can be addressed by
the CAN controller and the CPU. The CPU controls the CAN controller by selectively modi-
fying the various registers and bit fields in the Memory. The content of the various bit fields
are used to perform the functions of acceptance filtering, transmit search, interrupt search
and transfer completion.

In order to initiate a transfer, the transmission request bit has to be written to the message
object. The entire transmission procedure and eventual error handling is then done without
any CPU involvement. If a communication object has been configured to receive messages,
the CPU easily reads its data registers using CPU read instructions. The message object
may be configured to interrupt the CPU after every successful message transmission or
reception.

The CC770 features a powerful CPU interface that offers flexibility to directly interface to
many different CPUs. It can be configured to interface with CPUs using an 8-bit multiplexed,
16-bit multiplexed, or 8-bit non-multiplexed address/data bus for Intel and Motorola architec-
tures. A flexible serial interface is also available when a parallel CPU interface is not
required.
BOSCH - 8/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_g

en
er

al
_f

ea
tu

re
s.

fm
The CC770 provides storage for 15 message objects of 8-byte data length. Each message
object can be configured as either transmit or receive, except for the last message object.
The last message object is a receive only double buffer with a dedicated acceptance mask
designed to allow select groups of different message identifiers to be received.

The CC770 also implements a global acceptance masking feature for message filtering.
This feature allows the user to globally mask any identifier bits of the incoming message.
There are different programmable global mask registers for standard and extended mes-
sages.

The CC770 provides an improved set of network management and diagnostic functions
including fault confinement and a built-in monitoring tool. The built-in monitoring tool alerts
the CPU when a global status change occurs. Global status changes include message
transmission and reception, error frames, or sleep mode wake-up. In addition, each mes-
sage object offers full flexibility in detecting when a data or remote frame has been sent or
received.

The CC770 offers hardware, or pinout and software compatibility with the AN82527. Since
some reserved bits of the AN82527 are used for additional functions in the CC770, these
bits must be programmed as described in the Intel Specification to achieve software com-
patibility.

The CC770 is fabricated in Bosch’s reliable HC65-ST/65 technology and is available in a
44-lead PLCC for the automotive temperature range (-40 °C to +125 °C ambient).

1.4 Functional Overview

The CC770 CAN controller consists of six functional blocks. The CPU Interface logic man-
ages the interface between the CPU (host microcontroller) and the CC770 using an
address/data bus or the SPI. The CAN controller interfaces to the CAN bus and implements
the protocol rules of the CAN protocol for the transmission and reception of messages. The
RAM is the interface layer between the CPU and the CAN bus. The two port blocks provide
8-bit low speed I/O capability. The clockout block allows the CC770 to drive other chips,
such as the host-CPU.

The CC770 RAM provides storage for 15 message objects of 8-byte data length. Each
message object has a unique identifier and can be configured to either transmit or receive,
except for the last message object. The last message object is a receive only buffer with a
special mask design to allow select groups of different message identifiers to be received.

Each message object contains control and status bits. A message object with the direction
set as receive will send a remote frame by requesting a message transmission. A message
object with the direction set as transmit will be configured to automatically send a data
frame whenever a remote frame with a matching identifier is received over the CAN bus. All
message objects have separate transmit and receive interrupts and status bits, allowing the
CPU full flexibility in detecting when a remote or data frame has been sent or received.

The CC770 also implements a global masking feature for acceptance filtering. This feature
allows the user to globally mask, or ‘‘don’t care’’, any identifier bits of the incoming mes-
sage. This mask is programmable to allow the user to design an application-specific mes-
sage identification strategy. There are separate global masks for standard and extended
frames.

The incoming message first passes through the global mask and is matched to the identifi-
ers in message objects 1-14. If there is no identifier match then the message passes
BOSCH - 9/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_g

en
er

al
_f

ea
tu

re
s.

fm
through the local mask in message object 15. The local mask allows a large number of
infrequent messages to be received by the CC770. Message object 15 is also buffered to
allow the CPU time to service a message received.

1.5 CC770 Block Diagram

 The CC770 consists of the following functional blocks:

 Figure 1: Block Diagram of CC770.

 1.5.1 CAN Controller

The CAN controller controls the data stream between the Memory (parallel data) and the
CAN busline (serial data). The CAN controller also handles the error management logic and
the message objects.

 1.5.2 Intelligent Memory

The Memory is content addressable (CAM) for the CAN Controller which does the accept-
ance filtering in one clock cycle, whereas the CPU Interface Logic accesses the Memory
via register address (RAM). The advantage of this access is the speed and the minimized
area.

The access to the CAM is timeshared between the CPU Interface Logic and the CAN bus
(through the CAN controller). The Memory is addressed from 00H to FFH.

CAN
CONTROLLERCPU

INTERFACE
LOGIC

PORT1 PORT2
INTELLIGENT

CLKOUT

TX0
TX1

RX0
RX1

CLKOUTMODE1MODE0

CONTROL

ADDRESS/

PORT1 PORT2

BUS

DATA BUS

MEMORY

SPI
BOSCH - 10/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_g

en
er

al
_f

ea
tu

re
s.

fm
 1.5.3 CPU Interface Logic

The CC770 provides a flexible CPU interface capable of interfacing to many commonly
used microcontrollers. The following five modes could be selected using two CPU interface
mode pins and the RD# and WR# pins:

Mode 0 (1) is an 8-bit Intel multiplexed address data bus.

If the RD# and WR# pins are tied low at reset in Mode 0, the serial interface (SPI) mode is
entered.

Mode 1 (2) selects 16-bit Intel multiplexed address data bus.

Mode 2 (3) selects an 8-bit Motorola multiplexed address data bus.

Mode 3 (4) selects an 8-bit non-multiplexed address data bus for either synchronous or
asynchronous communication.

 1.5.4 Clockout

The on-chip clock generator consists of an oscillator, clock divider register and a driver cir-
cuit. The Clockout output range is XTAL (external crystal frequency) to XTAL/15.

The Clockout output driving strength (slew rate) is programmable in four steps.

 1.5.5 Two 8-Bit Ports

Two 8-bit low speed input/output (I/O) ports are available on-chip. Depending on the CPU
interface selected, at least 7 and up to 16 of these I/O pins are available for system use.

1. Mode 1 pin = 0, Mode 0 pin = 0
2. Mode 1 pin = 0, Mode 0 pin = 1
3. Mode 1 pin = 1, Mode 0 pin = 0
4. Mode 1 pin = 1, Mode 0 pin = 1
BOSCH - 11/84 - 17.11.03

Target Specification

BOSCH - 12/84 -

Rev. 1.3CC770

17.11.03

06
1.

2/
2.

3
-

15
.0

8.
97

 K

8/
E

IS
 -

 K
lo

se
-2

96
9

sp
ec

_p
ac

ka
ge

_d
ia

gr
am

.fm

2. Package Diagram

 Figure 2: Package Diagrams of CC770

7 8 9 10 11 12 13 14 15 16 17
6

5

4

3

2

1

44

43

42

41

40

18

39 38 37 36 35 34 33 32 31 30 29

19

20

21

22

23

24

25

26

27

28

(Package: PLCC44)

RD#/E

ALE/AS

AD0

AD1

AD2

VCC

MODE0

AD3

AD4/MOSI

AD5

AD6/SCLK

C
S

#

D
S

A
C

K
0#

P
2.

7/
W

R
H

#

P
2.

6/
IN

T
#

P
2.

5

P
2.

4

P
2.

3

P
2.

2

P
2.

1

P
2.

0

(W
R

#
/W

R
L
#
)/

(R
/W

#
)

XTAL1

XTAL2

VSS2

RX1

RX0

VSS1

INT#

TX1

TX0

CLKOUT

READY/MISO
A

D
7

P
1.

0/
A

D
8

P
1.

1/
A

D
9

P
1.

2/
A

D
10

P
1.

3/
A

D
11

P
1.

4/
A

D
12

P
1.

5/
A

D
13

P
1.

6/
A

D
14

P
1.

7/
A

D
15

M
O

D
E

1

R
E

S
E

T
#

1 2 3 4 5 6 7 8 9 10 11

44
43
42
41
40
39
38
37
36
35
34

12

33 32 31 30 29 28 27 26 25 24 23

13
14
15
16
17
18
19
20
21
22

not in production

Product Number

Date CodeStrip Mark

Wafer Lot No.

RD#/E

ALE/AS

AD0

AD1

AD2

VCC

MODE0

AD3

AD4/MOSI

AD5

AD6/SCLK

C
S

#

D
S

A
C

K
0#

P
2.

7/
W

R
H

#

P
2.

6/
IN

T
#

P
2.

5

P
2.

4

P
2.

3

P
2.

2

P
2.

1

P
2.

0

(W
R

#
/W

R
L
#
)/

(R
/W

#
)

XTAL1

XTAL2

VSS2

RX1

RX0

VSS1

INT#

TX1

TX0

CLKOUT

READY/MISO

A
D

7

P
1.

0/
A

D
8

P
1.

1/
A

D
9

P
1.

2/
A

D
10

P
1.

3/
A

D
11

P
1.

4/
A

D
12

P
1.

5/
A

D
13

P
1.

6/
A

D
14

P
1.

7/
A

D
15

M
O

D
E

1

R
E

S
E

T
#

(Package: MQFP44)

spec_package_diagram.fm

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_p

in
_d

es
cr

ip
tio

n.
fm
3. Product Description

3.1 Pin Description (PLCC 44)

Symbol Pin Function

VCC 1 Power connection must be shorted externally to +5V DC to provide
power to the entire chip.

AD2-0 2 - 4 Multi Function Pin, see Table 2.

ALE/
AS

5 ALE used for CPU Interface Modes 0 and 1.
AS used for Motorola modes. (In Mode 3, pin must be tied high.)

RD#/
E

6 RD# used for CPU Interface Modes 0 and 1.
E used for Motorola modes. (In Mode 3 Asynchronous, pin must be
tied high.)

WR#/
WRL#/
R/W#

7 For Intel CPU Interface Modes 0 and 1.
For Mode 1, 16-bit multiplexed mode, function is: write low byte
For CPU Interface Mode 3.

CS# 8 A low level on this pin enables the CPU to access the CC770.

DSACK0# 9 DSACK0# is an open-drain output(1) to sychronize accesses from the
CPU to the CC770 for CPU Interface Mode 3.

P2.7/
WRH#

10 Port 2, Bit 7(2)

For Mode 1, 16-bit multiplexed mode, function is: write high byte

P2.6/
INT#

11 Port 2, Bit 6(2)

Interrupt output (INT#) when MUX bit = 1 in CPU Interface Register

P2.5 12 Port 2, Bit 5(2)

P2.4 13 Port 2, Bit 4(2)

P2.3 14 Port 2, Bit 3(2)

P2.2 15 Port 2, Bit 2(2)

P2.1 16 Port 2, Bit 1(2)

P2.0 17 Port 2, Bit 0(2)

XTAL1 18 Input for an external clock.

XTAL2 19 Push-pull output from the internal oscillator. XTAL2 and XTAL1 are
the crystal connections to an internal oscillator. If an external oscilla-
tor is used, XTAL2 may not be connected. XTAL2 may not be used
as a clock output to drive other CPUs.

VSS2 20 Ground (0V) connection must be shorted externally to a VSS board
plane to provide analog ground for PLL.

 Table 1: Pin description
BOSCH - 13/84 - 17.11.03
spec_pin_description.fm

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_p

in
_d

es
cr

ip
tio

n.
fm
RX1 21 Inverting input from CAN bus transceiver if DcR0 bit in the Bus Confi-
guration Register (Address 2FH) is set.

RX0 22 Input from CAN bus transceiver if DcR0 bit in the Bus Configuration
Register (Address 2FH) is zero.

VSS1 23 Ground (0V) connection must be shorted externally to a VSS board
plane to provide digital ground.

INT# 24 The interrupt pin is an open drain output (requires external pull up
resistor) to the CPU.
The function of this pin is determined by the MUX bit in the CPU
Interface Register (Address 02H), see chapter 4.4.

TX1 25 Inverted serial push-pull data output to the CAN bus transceiver. Dur-
ing a recessive bit TX1 is low, during a dominant bit TX1 is high.

TX0 26 Serial push-pull data output to the CAN bus transceiver. During a
recessive bit TX0 is high, during a dominant bit TX0 is low.

CLKOUT 27 Programmable clock output. This push-pull output may be used to
drive the clock input of the CPU.

READY/

MISO

28 READY is an open-drain output to synchronize accesses from the
CPU to the CC770 for CPU Interface Modes 0 and 1.
MISO is the serial push-pull data output in the SPI mode.

RESET# 29 Warm Reset: (VCC remains valid while RESET# is asserted),
RESET# must be driven to a low level for 1 µs minimum.
Cold Reset: (VCC is driven to a valid level while RESET# is asserted)
RESET# must be driven low for 1 ms minimum (measured from a
valid VCC level) to ensure the oscillator and the PLL is stabile. No fall-
ing edge on the Reset pin is required during a cold reset event.

Mode1 30 Select, together with Pin 44, one of the four parallel interface
modes.(3)

P1.7-0 31-
38

Port 1 with multi Function Pins, see Table 2.(2)

AD7-3 39-
43

Multi Function Pins, see Table 2.

Mode0 44 Select, together with Pin 30, one of the four parallel interface modes.
See chapter 7.1.(3)

Symbol Pin Function

 Table 1: Pin description
BOSCH - 14/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_p

in
_d

es
cr

ip
tio

n.
fm
 Notes to pin descriptions:

(1) DSACK0# is often used as a pulldown output with a 3.3 kΩ pullup resistor and a 100 pF
load capacitance. An open-drain output is used because several peripherals may be con-
nected to the DSACK0# line. The CC770 specifies a TCHKH timing (CS# high to DSACK0#
high) equal to 55 ns, however a 3.3 kΩ resistor will not sufficiently charge the line when
DSACK0# is floated by the CC770. To meet this timing, the CC770 has an active pullup that
drives the DSACK0# output until it is high, and then the pullup is turned off. Therefore, the
pullup is active for a short time only.

(2) Port1 and Port2 pins are weakly held high until the Port Configuration Registers have
been written (locations 9FH and AFH respectively).

(3) Mode0 and Mode1 pins are internally connected to weak pulldowns. These pins will be
pulled low during reset if unconnected. Following reset, these pins float.

Symbol Pin

Mode 0
8-Bit
Intel

Multiplexed

Mode 1
16-Bit
Intel

Multiplexed

Mode 2
8-Bit

Motorola
Multiplexed

Mode 3
8-Bit
Non-

Multiplexed

SPI-Mode

Serial
Interface

AD0 4 AD0 AD0 AD0 A0 ICP

AD1 3 AD1 AD1 AD1 A1 CP

AD2 2 AD2 AD2 AD2 A2 CSAS

AD3 43 AD3 AD3 AD3 A3 STE

AD4/MOSI 42 AD4 AD4 AD4 A4 MOSI

AD5 41 AD5 AD5 AD5 A5 Unused

AD6/SCLK 40 AD6 AD6 AD6 A6 SCLK

AD7 39 AD7 AD7 AD7 A7 Unused

P1.0/AD8 38 P1.0 AD8 P1.0 D0 P1.0

P1.1/AD9 37 P1.1 AD9 P1.1 D1 P1.1

P1.2/AD10 36 P1.2 AD10 P1.2 D2 P1.2

P1.3/AD11 35 P1.3 AD11 P1.3 D3 P1.3

P1.4/AD12 34 P1.4 AD12 P1.4 D4 P1.4

P1.5/AD13 33 P1.5 AD13 P1.5 D5 P1.5

P1.6/AD14 32 P1.6 AD14 P1.6 D6 P1.6

P1.7/AD15 31 P1.7 AD15 P1.7 D7 P1.7

 Table 2: Multi Function Pins
BOSCH - 15/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_p

in
_d

es
cr

ip
tio

n.
fm
3.2 Hardware Reset

 3.2.1 Reset values of CC770 registers

During power up, the RESET pin must be driven to a valid low level (VIL) for 1 ms meas-
ured from a valid VCC level to ensure the oscillator and the PLL is stable. On warm reset
(VCC remains valid while RESET# is asserted), RESET# must be driven to a low level for 1
µs minimum.

The registers of the CC770 have the following values after warm reset:

The error management counters and the Bus Off state are reset by a hardware reset.

If a hardware reset occurs at power on, registers defined as unchanged should be inter-
preted as undefined.

Register Address Reset Value

Control Register 00H 01H

Status Register 01H undefined

CPU Interface Register 02H 61H

High Speed Register 04+05H unchanged

Global Mask - Standard 06+07H unchanged

Global Mask - Extended 08-0BH unchanged

Message 15 Mask 0C-0FH unchanged

Clockout Register 1FH 00H or 01H depending on
CPU Interface Mode

Bus Configuration 2FH 00H

Bit Timing Register 0 3FH 00H

Bit Timing Register 1 4FH 00H

Interrupt Register 5FH 00H

P1 Configuration Register 9FH 00H

P2 Configuration Register AFH 00H

P1 In BFH FFH

P2 In CFH FFH

PI Out DFH 00H

P2 Out EFH 00H

SPI Reset Address FFH not readable

Message Objects 1-15 unchanged

 Table 3: Reset values of CC770 registers
BOSCH - 16/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_p

in
_d

es
cr

ip
tio

n.
fm
 3.2.2 Reset values of CC770 output pins

The behaviour of CC770 output pins in reset procedure:

3.3 Software Initialization

Software initialization is started by setting the Init bit in the Control Register, either by soft-
ware, hardware reset, or by going Bus Off. While Init is set, all message transfers to and
from the CC770 are stopped and the TX0 and TX1 outputs are recessive. The error
counters are unchanged. Initialization is used to configure the CC770 memory without
interference to or by CAN bus.

Resetting Init bit completes initialization and the CC770 synchronizes itself to the CAN bus
by waiting for 11 consecutive recessive bits (called bus idle) before it will take part in bus
activities.

Note:

The Bus Off recovery sequence (see CAN Specification Rev. 2.0) cannot be shortened by
setting or resetting Init. If the device goes Bus Off, it will set Init of its own accord, stopping
all bus activities. Once Init has been cleared by the CPU, the device will then wait for 129
occurrences of Bus Idle (129 * 11 consecutive recessive bits) before resuming normal oper-
ations. At the end of the Bus Off recovery sequence, the Error Management Counters will
be reset.

During the waiting time after the resetting of Init, each time a sequence of 11 recessive bits
has been monitored, a Bit0Error code is written to the Status Register, enabling the CPU to
readily check up whether the CAN bus is stuck at dominant or continuously disturbed and to
monitor the proceeding of the Bus Off recovery sequence.

Software initialization does not change configuration register values.

3.4 Configuration of Bit Timing

After setting bits Init and CCE in the CAN Control Register, the bit timing can be configured
by writing to the Bit Timing Registers.

Pin
output state

while reset is active
output state

direct after reset

Mode 0/1 weakly pulled low high impedance

Port 1/2 weakly pulled high high impedance input

Clockout active

TX0 1 (recessive)

TX1 0 (recessive)

INT# float

DSACK0# float

 Table 4: Reset states of CC770 output pins
BOSCH - 17/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_p

in
_d

es
cr

ip
tio

n.
fm
While Bit Timing Register 0 controls the (Re)Synchronisation Jump Width and the Baud
Rate Prescaler, Bit Timing Register 1 is used to define the position of the Sample Point
inside a Bit Time. For a detailed description how to program the bit timing see chapter 4.14.

3.5 Silent Mode

The CAN Controller can be set in Silent Mode by programming the Bus Configuration Reg-
ister bits DcR1 and DcR0 both to one.

In Silent Mode, the CC770 is able to receive valid data frames and valid remote frames, but
it sends only recessive bits on the CAN bus and it cannot start a transmission. If the CAN
Controller is required to send a dominant bit (ACK bit, overload flag, active error flag), the
bit is rerouted internally so that the CAN Controller monitors this dominant bit, although the
CAN bus may remain in recessive state.

The Silent Mode can be used to analyze the traffic on a CAN bus without affecting it by the
transmission of dominant bits (Acknowledge Bits, Error Frames).

3.6 Low Current Modes

Power Down and Sleep Modes are activated by the PwD and Sleep bits in the CPU Inter-
face Register (02H) under the control of the programmer.

During Power Down and Sleep Mode the CPU Interface Register is the only accessible reg-
ister. In this mode the oscillator is not active and no access to the message objects is possi-
ble.

The CC770 exits from Power Down by either a hardware reset or by resetting the PwD bit to
"0". The CPU must read the hardware reset bit (bit 7, register 02H) to ensure the CC770
has exited Power Down.

The CC770 enters Sleep Mode after the Sleep bit in the CPU Interface Register (bit 3, reg-
ister 02H) is set and a possibly ongoing transmission on the CAN Bus has finished.

Sleep mode is exited by resetting the Sleep bit or when there is activity on the CAN bus.
The CC770 requires a minimum of 10 ms to come out of Sleep Mode after bus activity
occurs to ensure the oscillator and the PLL is stabile.

Power Down and Sleep Mode should not be entered directly after reset. The user program
must perform a minimum Memory configuration at any time (preferably during the initializa-
tion) prior to entering these modes.

Programming the following registers satisfies the minimum configuration requirement:

• Control Register (00H) (set CCE bit to "1")

• CPU Interface Register (02H) (DMC bit application specific)

• Bit Timing Register 0 (3FH) (application specific)

• Bit Timing Register 1 (4FH) (application specific)

• All MO Control 0 Registers (reset MsgVal bit to "0")

• Control Register (00H) (reset Init and CCE bits to "0")
BOSCH - 18/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_f

un
ct

io
na

l_
de

sc
rip

tio
n.

fm
4. Functional Description

This section explains the functional operation of the CC770 by describing the registers used
to configure the chip and Message Objects.

4.1 CC770 Address Map

The CC770 allocates an address space of 256 bytes. All registers are organized as 8-bit
registers.

Address Register

00H Control

01H Status

02H CPU Interface

03H reserved

04+05H High Speed Read

06+07H Global Mask - Standard

08-0BH Global Mask - Extended

0C-0FH Message 15 Mask

10-1EH Message 1

1FH ClkOut *

20-2EH Message 2

2FH Bus Configuration *

30-3EH Message 3

3FH Bit Timing 0 *

40-4EH Message 4

4FH Bit Timing 1 *

50-5EH Message 5

5FH Interrupt

60-6EH Message 6

6FH Receive Error Counter

70-7EH Message 7

7FH Transmit Error Counter

 Table 5: CC770 address map
BOSCH - 19/84 - 17.11.03
spec_functional_description.fm

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_f

un
ct

io
na

l_
de

sc
rip

tio
n.

fm
NOTE:
* The CPU may write to the Configuration Registers only if the CCE bit is "1" (Control Regis-
ter).

4.2 Control Register (00H)

The default value of the Control Register after a hardware reset is 01H.

Reserved bits read as "0" and must be written as "0".

80-8EH Message 8

8FH reserved

90-9EH Message 9

9FH P1CONF *

A0-AEH Message 10

AFH P2CONF *

B0-BEH Message 11

BFH P1IN

C0-CEH Message 12

CFH P2IN

D0-DEH Message 13

DFH P1OUT

E0-EEH Message 14

EFH P2OUT

F0-FEH Message 15

FFH Serial Reset Address

7 6 5 4 3 2 1 0

res CCE EAF res EIE SIE IE Init

rw rw rw r rw rw rw rw

Address Register

 Table 5: CC770 address map
BOSCH - 20/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_f

un
ct

io
na

l_
de

sc
rip

tio
n.

fm
CCE Change Configuration Enable

one The CPU has write access to the Configuration Registers (ClkOut, Bus Config-
uration,...). Init bit should be set in order to stop CAN bus activities, if the values
in the Bit Timing Registers must be changed.

zero The CPU has no write access to the Configuration Registers.

This bit is reset by the CPU to provide protection against unintentional rewriting of critical
registers by the CPU following the initialization sequence.

EAF Enable Additional Functions

one The Receive Error Counter (address 6FH) and the Transmit Error Counter
(address 7FH) can be read. The additional mask bits MDir and MXtd in the
Message 15 Mask are enabled.

zero The addresses 6FH and 7FH are reserved. The additional mask bits MDir and
MXtd in the Message 15 Mask are disabled and will be read as 00, independent
of the last value written to those bits while EAF was "1".

The CC770 provides additional functions giving the programmer the possibility to read the
Error Counters and to mask Xtd and Dir bits in the Message 15 Mask, allowing the recep-
tion of all possible messages not received by other Message Objects.

To enable this functions the programmer has to set the EAF bit. In the AN82527 this bit is
reserved and must not be set to 1.

EIE Error Interrupt Enable

one Error interrupts enabled. A change in the error status of the CC770 will cause
an interrupt to be generated.

zero Error interrupts disabled. No error interrupt will be generated.

Error interrupts are BOff and Warn in the Status Register. Error Interrupt Enable is set by
the CPU to allow the CC770 to interrupt CPU when an abnormal number of CAN bus errors
have been detected.

It is recommended to enable this interrupt during normal operation.

SIE Status Change Interrupt Enable

one Status Change Interrupt enabled. An interrupt will be generated when a CAN
bus error is detected in the Status Register or a transfer (reception or transmis-
sion) is successfully completed, independent of the interrupt enable bits in any
Message Object.

zero Status Change Interrupt disabled. No status interrupt will be generated.

Status Change Interrupts are WakeUp, RxOK, TxOK, and LEC0-2 in the Status Register.

RxOK occurs upon every successful message transmission on the CAN bus, regardless of
whether the message is stored by the CC770.

The LEC bits are very helpful to indicate whether Bit or Form Errors are occurring. In nor-
mal operation it is not advised to enable this interrupt for LEC since the CAN protocol was
designed to handle these error conditions in hardware by error frames and the automatic
BOSCH - 21/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_f

un
ct

io
na

l_
de

sc
rip

tio
n.

fm
retransmission of messages. When cumulative LEC occur, the warning and BusOff flags
will be set. The Error Interrupt should be enabled to detect these conditions.

In most applications, the SIE bit should not be set. Since this interrupt will occur for every
message, the CPU will be unnecessarily burdened. Instead, interrupts should be imple-
mented on a Message Object basis so interrupts occur only for messages that are used by
the CPU.

The SIE bit is set by the CPU.

NOTE:

If the Status Change Interrupts and Message Object receive/transmit interrupts are ena-
bled, there will be two interrupts for each message successfully received or transmitted by a
Message Object.

IE Interrupt Output Enable

one Interrupt Pin enabled.

zero Interrupt Pin disabled. The CC770 will generate no interrupts although the
Interrupt Register (5FH) will still be updated.

Applies to EIE, SIE, and Message Object Tx/Rx interrupts. For example the Interrupt Regis-
ter (5FH) contains a value other than zero, indicating the interrupt source (Message Object
or Status), and the IE bit is set to one, an interrupt will be generated. No interrupt will be lost
because of periodic setting or resetting of this bit.

The Interrupt Output Enable bit is set by the CPU.

INIT Initialization

one Software initialization is enabled.

zero Software initialization is disabled.

Following a hardware reset, this bit will be set.

The Init bit is written by the CPU and is set by the CC770 when it goes busoff. Initialization
is a state which allows the user to configure the CC770 Memory without the chip participat-
ing in any CAN bus transmissions. While Init equals one, all message transfers to and from
the CAN bus are stopped, and the status of the CAN bus output Tx is recessive. Initializa-
tion will most often be used the first time after power-up and when the CC770 has removed
itself from the CAN bus after going busoff.

Init should not be used in normal operation when the CPU is modifying transmit data; the
CPUUpd bit in the Control 1 register from each Message Object is used in this case.

4.3 Status Register (01H)

The default value of the Status Register after a hardware reset is undefined.

7 6 5 4 3 2 1 0

BOff Warn WakeUp RxOK TxOK LEC

r r r rw rw rw
BOSCH - 22/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_f

un
ct

io
na

l_
de

sc
rip

tio
n.

fm
BOff Bus Off Status

one There is an abnormal rate of occurrences of errors on the CAN bus.

zero The CC770 is not busoff.

The Bus Off condition occurs when the Transmit Error Counter in the CC770 has reached
the limit of 256. In consequence, the CC770 going busoff. During busoff, no messages can
be received or transmitted.

The only way to exit this state is by resetting the Init bit in the Control Register (location
00H). When this bit is reset, the busoff recovery sequence begins. The busoff recovery
sequence resets the Transmit and Receive Error Counters. After the CC770 counts 128
packets of 11 consecutive recessive bits on the CAN bus, the busoff state is exited.

The Bus Off Status bit is written by the CC770.

Warn Warning Status

one There is an abnormal rate of occurrences of errors on the CAN bus.

zero There is no abnormal occurrence of errors.

The Warning condition occurs when an error counter in the CC770 has reached the limit of
96. When this bit is set, an interrupt will occur if the EIE and IE bits of the Control Register
(00H) are set.

The Warning Status bit is written by the CC770.

WakeUp Wake Up Status

one The CC770 has left Power Down or Sleep mode.

zero No wake up.

Setting the Sleep bit in CPU Interface register (02H) to "1" will place the CC770 into Sleep
mode. While in Sleep mode, the WakeUp bit is "0". The WakeUp bit will become "1" when
bus activity is detected or when the CPU writes the Sleep bit to "0". The WakeUp bit will
also be set to "1" after the CC770 comes out of Power Down mode.

The WakeUp bit and WakeUp interrupt is reset by reading the Status Register.

This bit is written by the CC770.

RxOK Receive Message Successfully

one Since this bit was last reset to zero by the CPU, a message has been success-
fully received.

zero Since this bit was last reset by the CPU, no message has been successfully
received.

This bit is never reset by the CC770. A successfully received message may be any CAN
bus transmission that is error-free, regardless of whether the CC770 has configured a Mes-
sage Object to receive that particular message identifier.

The CC770 will set this bit, the CPU may clear it.
BOSCH - 23/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_f

un
ct

io
na

l_
de

sc
rip

tio
n.

fm
TxOK Transmit Message Successfully

one Since this bit was last reset to zero by the CPU, a message has been success-
fully transmitted (error free and acknowledged by at least one other node).

zero Since this bit was last reset by the CPU, no message has been successfully
transmitted.

This bit is never reset by the CC770.

The CC770 will set this bit, the CPU may clear it.

LEC Last Error Code

0 No error

1 Stuff Error

More than 5 equal bits in a sequence have occurred in a part of a received
message where this is not allowed.

2 Form Error

The fixed format part of a received frame has the wrong format.

3 Acknowledgment Error (AckError)

The message transmitted by this device was not acknowledged by another
node.

4 Bit 1 Error

During the transmission of a message (with the exception of the arbitration
field), the CC770 wanted to send a recessive level (bit of logical value 1), but
the monitored CAN bus value was dominant.

5 Bit 0 Error

During the transmission of a message, the CC770 wanted to send a dominant
level (bit of logical value 0), but the monitored CAN bus value was recessive.
During busoff recovery, this status is set each time a recessive bit is received
(indicating the CAN bus is not stuck dominant).

6 CRC Error

The CRC checksum was incorrect in the message received. The CRC received
for an incoming message does not match with the CRC value calculated by this
device for the received data.

7 Unused

This field contains a code which indicates the type of the first error to occur in a frame on
the CAN bus. If a message has been transferred (reception or transmission) without error,
this field will be cleared to ‘0’.

The code ‘7’ is unused and may be written by the CPU to check for updates.

 4.3.1 Status Interrupts

If the SIE bit in the Control Register (00H) is set and the CC770 has updated the Status
Register, the Interrupt Register (5FH) will contain a "1". The Status Register must be read if
BOSCH - 24/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_f

un
ct

io
na

l_
de

sc
rip

tio
n.

fm
a Status Change Interrupt occurs. Reading the Status Register will clear the Status Change
Interrupt.

A Status Change Interrupt will occur on every successful reception or transmission, regard-
less of the state of the RxOK and TxOK bits. Therefore, if TxOK is set and a subsequent
transmission occurs, an interrupt will occur (if enabled) even though TxOK was previously
equal to one.

There are two ways to implement receive and transmit interrupts. The difference between
these two methods is one relies on the hardwired priority of the Message Objects and the
other is suitable for polling.

The first and preferred method uses the TxIE and RxIE bits in the Control 0 register for each
corresponding Message Object. Whenever a message is transmitted or received by this
Message Object, the corresponding interrupt is serviced in accordance with its priority (if
the IE bit of register 00H is set). This method uses the hardwired priority scheme of the
CC770 which requires minimal CPU intervention.

The second method sets the SIE bit of the Control Register (00H) to "1" which will force an
interrupt whenever successful message transmissions or receptions occur. The TxOK bit
will be set when any of the Message Objects transmits a message. The RxOK bit will be set
on any successfully received message. This may be any CAN bus transmission that is
error-free, regardless of whether the CC770 has configured a Message Object to receive
that particular message identifier. This method allows the user to more easily define the
interrupt priority of each Message Object by polling the Message Objects following an SIE
interrupt.

4.4 CPU Interface Register (02H)

The value of the CPU Interface Register during the hardware reset is E1H, after the end of
the hardware reset the default value is 41H.

RstSt Hardware Reset Status

one The hardware reset of the CC770 is active (RESET is low). While reset is
active, no access to the CC770 is possible, except read access on the CPU
interface register.

zero Normal operation.

The CPU must ensure this bit is zero before further access to the CC770 after reset.

This bit is written by the CC770.

DSC Divide System Clock (SCLK).

one The system clock is equal to XTAL/2.

zero The system clock is equal to XTAL.

This bit is written by the CPU.

7 6 5 4 3 2 1 0

RstST DSC DMC PwD Sleep MUX StEn CEn

r rw rw rw rw rw rw rw
BOSCH - 25/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_f

un
ct

io
na

l_
de

sc
rip

tio
n.

fm
DMC Divide Memory Clock (MCLK)

one The memory clock is equal to SCLK/2.

zero The memory clock is equal to SCLK.

This bit is written by the CPU.

PwD Power Down Mode enable and Sleep Mode enable

Information about low Current Modes see chapter 3.6.

The Sleep bit and the Power Down bit may be set and reset by the CPU. The Sleep bit will
also be reset by CAN bus activity during Sleep Mode.

MUX (see text below)

one Pin 24 = float, pin 11 = INT#.

zero Normal operation: Pin 24 = INT#, Pin 11 = P2.6.

This bit is written by the CPU.

Bit 2 (MUX) controls whether the interrupt output is available at pin 11 (MUX = 1) or pin 24
(MUX = 0). The AN82527 provides an output voltage of VCC/2 at pin 24 if MUX = 1 to sup-
port an "ISO low speed physical layer". The CC770 lets pin 24 float if MUX = 1, assuming
an appropriate CAN bus driver IC is utilized.

StEn Clockout Stretch Enable

one The Clockout for the CPU is stretched to lengthen the read and write cycles of
the CC770 instead of generating wait states.
Example: CPU read data from CC770
When the CPU writes the address byte to the CC770 the Clockout is disabled,
until the data of the selected address is available for read.

zero The Clockout is not streched.

CEn Clockout enable

one Clockout signal is enabled, (default after reset).

zero Clockout signal is disabled.

PwD Sleep Function

0 0 Both Power Down and Sleep Modes are not active.

0 1 Sleep Mode is active. These bits are written by the CPU.

1 X Power Down Mode is active.

 Table 6: Function of Power Down and Sleep bits
BOSCH - 26/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_f

un
ct

io
na

l_
de

sc
rip

tio
n.

fm
Accesses to the CPU Interface Register are asynchronous, so it is possible to read and
write this register even if there is no clock input or during Power Down Mode and Sleep
Mode.

 4.4.1 Clocking Description

There are two analogue clocks and four digital clocks in the CC770. The analogue clocks
are the crystal oscillator clock (XTAL) and the PLL clock (PLLCLK). The digital clocks are
the system clock (SCLK), the memory clock (MCLK), the Clockout pin signal, and the SPI
clock (SPICLK). While the SPI clock is directly controlled by the SPI master, the other digital
clocks are derived from the analogue clocks.

The PLLCLK (two times the frequency of XTAL) is provided as clock source for SCLK in
order to allow a sufficient system clock frequency SCLK for high CAN bit rates at a moder-
ate XTAL frequency. The balanced two-phase clock SCLK is always the result of a divide-
by-2; CPU Interface Register's bit DSC decides whether the PLL (DSC="0", SCLK=XTAL)
or XTAL (DSC=”1”, SCLK=XTAL/2) is the source of SCLK. SCLK is the clock of the CAN's
bit timing and other CAN protocol functions.

The memory clock MCLK is derived from SCLK, it is either the same as SCLK (DMC=”0”) or
it is SCLK/2 (DMC=”1”), compensating for the limited clocking range of the CC770's Con-
tent Addressable Memory (CAM).

The Clockout pin signal is always derived from PLLCLK, its actual frequency is controlled
by the CDv value in the ClkOut register (1FH).

If the Clockout pin is not used and the SCLK frequency is sufficient at XTAL/2, then the PLL
should be disabled in order to reduce the CC770's electromagnetic interference (EMI). This
is done by setting DSC="1", StEn="1", and CEn="0".

When the PLL is enabled, the minimum XTAL frequency is 8 MHz. Since the CC770's
design is fully static, the XTAL frequency may be lower than 8 MHz when the crystal at the
XTAL pins is replaced by a clock generator and the PLL is disabled.

Notes:

Frequency of SCLK = fXTAL/(1 + DSC bit)

Frequency of MCLK = fSCLK/(1 + DMC bit) = fXTAL/[(1 + DSC bit) * (1 + DMC bit)]

fXTAL SCLK MCLK DSC bit DMC bit

8 MHz 8 MHz 8 MHz 0 0

10 MHz 10 MHz 5 MHz 0 1

12 MHz 6 MHz 6 MHz 1 0

16 MHz 8 MHz 8 MHz 1 0

20 MHz 10 MHz 5 MHz 1 1

 Table 7: Maximum MCLK frequency for various oscillator frequencies
BOSCH - 27/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_f

un
ct

io
na

l_
de

sc
rip

tio
n.

fm
4.5 High Speed Read Register (04+05H)

High Speed Read Register (04H)

High Speed Read Register (05H)

The value of the High Speed Read register is not affected by a hardware reset.

The High Speed Read register is a read only register and is the output buffer for the CPU
Interface Logic. This register is part of the CPU Interface Logic and is not located in the
RAM.

During a read to the RAM (low speed registers) this register is loaded with the value of the
low speed register being accessed.

The High Speed Read register is available to provide a method to read the CC770 when the
CPU (host microcontroller) is unable to satisfy read cycle timings for low speed CC770 reg-
isters. In other words, if the read access time of the CC770 is too slow for the CPU and the
CPU cannot extend the read bus cycle, the following double read method should be used.

 4.5.1 Double Read Operation

The CPU can execute double reads where the first read addresses the low speed register
and the second read addresses the High Speed Read register. The first read is a dummy
read for the CPU, however the low speed register value is stored in the High Speed Read
register. The second read to the High Speed Read register will provide the data from the
desired low speed register.

The advantage of double reads is both read operations have fast access times. The first
read of the low speed register requires 40 ns (verify in current data sheet) to load the High
Speed Read Register (the data on the address/data pins is not valid). The second read of
the High Speed Read register requires 45 ns (verify in current data sheet) and the data on
the address/data bus is valid.

Therefore, if the access time of a low speed register is too long for the CPU then a second
read to the High Speed Register will produce the correct data. Please note Low and High
Speed registers have different access timing specifications in the CC770 data sheet.

During a 16-bit read access the low and high byte will contain the 16-bit value from the read
access. For an 8-bit read access the low byte will contain the value from the read access.

7 6 5 4 3 2 1 0

Low Byte

r

7 6 5 4 3 2 1 0

High Byte

r

BOSCH - 28/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_f

un
ct

io
na

l_
de

sc
rip

tio
n.

fm
4.6 Global Mask - Standard Register (06-07H)

Global Mask (06H)

Global Mask (07H)

The value of the Global Mask Standard is not affected by a hardware reset.

Reserved bits read as "1".

Mskx Mask bit at position X

one must-match (incoming bit value must match to the corresponding bit in the Arbi-
tration Register from a Message Object)

zero don’t care (accept a "0" or "1" for that bit position)

The Global Mask Standard register applies only to messages using the standard CAN Iden-
tifier and thereby to Message Objects with the Xtd bit set to "0". This feature, also called
message acceptance filtering, allows the user to Globally Mask, or “don’t care” any identi-
fier bits of the incoming message. This mask is programmable to allow the user to develop
an application specific masking strategy.

Note:

When a remote frame is sent, an CC770 receiver node will use the Global Mask Registers
to determine whether the remote frame matches to any of its Message Objects. If the
CC770 is programmed to transmit a message in response to a remote frame message
identifier, the CC770 will transmit a message with the message identifier of the CC770 Mes-
sage Object. The result is the remote message and the responding CC770 transmit mes-
sage may have different message identifiers because some CC770 Global Mask Register
bits are "don’t care".

4.7 Global Mask - Extended Register (08-0BH)

Global Mask Extended (08H)

7 6 5 4 3 2 1 0

Msk28 Msk27 Msk26 Msk25 Msk24 Msk23 Msk22 Msk21

rw rw rw rw rw rw rw rw

7 6 5 4 3 2 1 0

Msk20 Msk19 Msk18 res

rw rw rw r

7 6 5 4 3 2 1 0

Msk28 Msk27 Msk26 Msk25 Msk24 Msk23 Msk22 Msk21

rw rw rw rw rw rw rw rw
BOSCH - 29/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_f

un
ct

io
na

l_
de

sc
rip

tio
n.

fm
Global Mask Extended (09H)

Global Mask Extended (0AH)

Global Mask Extended (0BH)

The value of the Global Mask Extended is not affected by a hardware reset.

Reserved bits read as "0".

Mskx Mask bit at position x

one must-match (incoming bit value must match to the corresponding bit in the Arbi-
tration Register from a Message Object)

zero don’t care (accept a "0" or "1" for that bit position)

The Global Mask extended register applies only to messages using the extended CAN
identifier and thereby to Message Objects with the Xtd bit set to "1". This feature allows the
user to Globally Mask, or “don’t care”, any identifier bits of the incoming message. This
mask is programmable to allow the user the develop an application specific masking strat-
egy.

Note:

When a remote frame is sent, an CC770 receiver node will use its Global Mask Registers to
determine whether the remote frame matches to any of its Message Objects. If the CC770
is programmed to transmit a message in response to a remote frame message identifier,
the CC770 will transmit a message with the message identifier of the CC770 Message
Object. The result is the remote message and the responding CC770 transmit message
may have different message identifiers because some CC770 Global Mask Register bits
are "don’t care".

7 6 5 4 3 2 1 0

Msk20 Msk19 Msk18 Msk17 Msk16 Msk15 Msk14 Msk13

rw rw rw rw rw rw rw rw

7 6 5 4 3 2 1 0

Msk12 Msk11 Msk10 Msk9 Msk8 Msk7 Msk6 Msk5

rw rw rw rw rw rw rw rw

7 6 5 4 3 2 1 0

Msk4 Msk3 Msk2 Msk1 Msk0 res

rw rw rw rw rw r
BOSCH - 30/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_f

un
ct

io
na

l_
de

sc
rip

tio
n.

fm
4.8 Acceptance Filtering Implications

The CC770 implements two acceptance masks which allow Message Objects to receive
messages with a range of message identifiers (IDs) instead of just a single message ID.
This provides the application the flexibility to receive a wide assortment of messages from
the bus.

The CC770 observes all messages on the CAN bus and stores any message that matches
a message’s ID programmed into an “active” Message Object. It is possible to define which
message ID bits must identically match those programmed in the Message Objects to store
the message. Therefore, ID bits of incoming messages are either “must-match” or “don’t-
care”. By defining bits to be “don’t-care”, Message Objects will receive multiple message
IDs.

4.9 Message 15 Mask Register (0C-0FH)

 Message 15 Mask Register (0CH)

Message 15 Mask Register (0DH)

Message 15 Mask Register (0EH)

Message 15 Mask Register (0FH)

The value of the Message 15 Mask is not affected by a hardware reset.

Reserved bit read as "0".

7 6 5 4 3 2 1 0

Msk28 Msk27 Msk26 Msk25 Msk24 Msk23 Msk22 Msk21

rw rw rw rw rw rw rw rw

7 6 5 4 3 2 1 0

Msk20 Msk19 Msk18 Msk17 Msk16 Msk15 Msk14 Msk13

rw rw rw rw rw rw rw rw

7 6 5 4 3 2 1 0

Msk12 Msk11 Msk10 Msk9 Msk8 Msk7 Msk6 Msk5

rw rw rw rw rw rw rw rw

7 6 5 4 3 2 1 0

Msk4 Msk3 Msk2 Msk1 Msk0 MDir MXtd res

rw rw rw rw rw rw rw r
BOSCH - 31/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_f

un
ct

io
na

l_
de

sc
rip

tio
n.

fm
Mskx Mask bit at position X

one must-match (incoming bit value must match to the corresponding bit in the Arbi-
tration Register from the Message Object 15)

zero don’t care (accept a "0" or "1" for that bit position)

MDir Mask Direction Bit (EAF must be set, see note)

one must-match (incoming Direction bit value must match to the corresponding bit
in the Arbitration Register from the Message Object 15)

zero don’t care (Message Object 15 accepts Remote and Data Frames)

MXtd Mask Extended Bit (EAF must be set, see note)

one must-match (incoming Xtd bit value must match to the corresponding bit in the
Arbitration Register from the Message Object 15)

zero don’t care (Message Object 15 accepts Standard and Extended Identifier
Frames)

Notes:

The Message 15 Mask Register is a programmable local mask. This feature allows the user
to locally mask, or “don’t care”, any identifier bits of the incoming message for Message
Object 15. Incoming messages are first checked for an acceptance match in Message
Objects 1- 14 before passing through to Message Object 15. Consequently, the Global
Mask and the Local Mask apply to messages received in Message Object 15 in that way,
that Message 15 Mask is “ANDed” with the Global Mask. This means that any bit defined as
“don’t-care” in the Global Mask will automatically be a “don’t care” bit for message 15.

For the receive-only Message Object 15, it is also possible to mask the bits Dir and Xtd,
allows the reception of Standard and Extended as well as Data and Remote Frames in this
Message Object.

To enable the MDir and MXtd bits the EAF bit has to be set in the Control Register 00H.

If EAF="0", the additional mask bits MDir and MXtd in the Message 15 Mask Register are
disabled and the bits will be read as "00", independent of the last value written to those bits
while EAF was set. The internal interpretation is "11", so the bits Dir and Xtd must match for
acceptance filtering.

4.10 ClkOut Register (1FH)

The default value of the ClkOut Register after a hardware reset is 00H (Modes 0 and 1 and
serial mode) or 01H (Modes 2 and 3).

The ClkOut register controls the frequency of the ClkOut signal as well as the slew rate.
The default frequency of ClkOut depends on the CPU interface mode. For Modes 0, 1 and

7 6 5 4 3 2 1 0

0 0 SL1 SL0 CDv

r r rw rw rw
BOSCH - 32/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_f

un
ct

io
na

l_
de

sc
rip

tio
n.

fm
serial mode the default frequency is XTAL. For Modes 2 and 3 the default frequency is
XTAL/2. The following tables lists the programmable ClkOut frequencies and the slew
rates:

Note:

The SL0/1 bits adjusts the driving current of the CLKOUT pin. So the resulting slew rate
also depends on the external capacitance of the CLKOUT circuit. Therefore the optimum
configuration of the SL0/1 bits is application specific, EMI requirements have to be
regarded.

CDv ClkOut Frequency

0000 XTAL

0001 XTAL/2

0010 XTAL/3

0011 XTAL/4

0100 XTAL/5

0101 XTAL/6

0110 XTAL/7

0111 XTAL/8

1000 XTAL/9

1001 XTAL/10

1010 XTAL/11

1011 XTAL/12

1100 XTAL/13

1101 XTAL/14

1110 XTAL/15

1111 Reserved

 Table 8: Programming ClkOut

SL1 SL0 slew rate

0 0 fast

0 1 medium to fast

1 0 medium to slow

1 1 slow

 Table 9: Programming ClkOut slew rates
BOSCH - 33/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_f

un
ct

io
na

l_
de

sc
rip

tio
n.

fm
4.11 Bus Configuration Register (2FH)

The default value of the bus Configuration Register after a hardware reset is 00H.

Reserved bit read as "0".

Pol Polarity

one A logical one is interpreted as dominant and a logical zero is recessive on the
Rx0 input.

zero A logical one is interpreted as recessive and a logical zero is dominant bit on
the Rx0 input.

DcT1 Disconnect TX1 output

one TX1 output driver disabled, recommended for applications with bus driver ICs.

zero TX1 output driver enabled.

DcR1 Silent Mode

one Silent Mode is active, if DcR0 bit is set.

zero Normal operation

In Silent Mode, the CC770 is able to receive valid data frames and valid remote frames, but
it sends only recessive bits on the CAN Bus and it cannot start a transmission. For addi-
tional Information, see chapter 3.5.

DcR0 Select Rx input

one Rx1 is enabled and used as inverted CAN input.

zero Rx0 is enabled and used as non inverted CAN input.

Notes:

To be compatible to AN82527, the obsolete bits 7, 6, and 4 remain writeable.

Since the CC770 has no analog input comparator, its function is the same as that of the
AN82527 with CoBy (bit 6) set. In the CC770, CoBy remains writable. Pol (bit 5) can invert
the input value. DcR1 remains writable but without DcR0, it has no function. If DcR0 is set,
Rx1 is used as (inverting) CAN input.

In applications with a bus driver IC (CF150 or other), the function of the CC770 is the same
as that of AN82527.

7 6 5 4 3 2 1 0

res res Pol res DcT1 res DcR1 DcR0

rw rw rw rw rw r rw rw
BOSCH - 34/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_f

un
ct

io
na

l_
de

sc
rip

tio
n.

fm
4.12 Receive Error Counter (6FH)

The default value of the Receive Error Counter after a hardware reset is 00H.

RP Receive Error Passive

one The Receive Error Counter has reached the error passive level as defined in
the CAN Specification.

zero The Receive Error Counter is below the error passive level.

REC6-0 Receive Error Counter

Actual state of the Receive Error Counter. Values between 0 and 127.

Note:

The Receive Error Counter is only readable, if the EAF bit is set in the Control Register.
Otherwise RP and REC6-0 are reserved bits.

4.13 Transmit Error Counter (7FH)

The default value of the Transmit Error Counter after a hardware reset is 00H.

TEC7-0 Transmit Error Counter

Actual state of the Transmit Error Counter. Values between 0 and 255.

Note:

The Transmit Error Counter is only readable, if the EAF bit is set in the Control Register.
Otherwise TEC7-0 are reserved bits.

7 6 5 4 3 2 1 0

RP REC6-0

r r

7 6 5 4 3 2 1 0

TEC7-0

r

BOSCH - 35/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_f

un
ct

io
na

l_
de

sc
rip

tio
n.

fm
4.14 Bit Timing Registers

 4.14.1 Bit Timing Overview

A CAN message consists of a series of bits that are transmitted in consecutive bit times. A
bit time accounts for propagation delay of the bit, CAN chip input and output delay, and syn-
chronization tolerances. This section describes components of a bit time from the perspec-
tive of the CAN Specification and the CC770.

According to the CAN Specification, the nominal bit time is composed of four time seg-
ments. These time segments are separate and non-overlapping as shown below:

 Figure 3: Time Segments of Bit Time

SYNC_SEG Synchronisation Segment

This part of the bit time is used to synchronize the various nodes on the bus. An
edge is expected to lie within this segment.

PROP_SEG Propagation Time Segment

This part of the bit time is used to compensate for the physical delay times
within the network. It is twice the sum of the signal’s propagation time on the
bus line, the input comparator delay and the output driver delay.

NOTE:

The factor of two accounts arbitration which requires nodes consecutively to
synchronize to different transmitters.

PHASE_SEG1, PHASE_SEG2: Phase Buffer Segment1,2

These segments are used to compensate for edge phase errors and can be
lengthened or shortened by resynchronization.

SAMPLE POINT:

The sample point is the point of time at which the bus level is read and inter-
preted as the value of that respective bit. Its location is at the end of
PHASE_SEG1.

SYNC_SEG

SAMPLE TRANSMIT

NOMINAL BIT TIME

PHASE_SEG2PHASE_SEG1PROP_SEG

POINT
BOSCH - 36/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_f

un
ct

io
na

l_
de

sc
rip

tio
n.

fm
 4.14.2 CC770 Bit Timing Definitions

In this application, the Synchronisation Segment is represented by tSync, the Phase Buffer
Segment2 is represented by tTSeg2, while tTSeg1 is the summation of the Propagation Time
Segment and the Phase Buffer Segment1.

The preceding figure represents a bit time from the perspective of the CC770. A bit time is
subdivided into time quanta. One time quantum is derived from the System Clock (SCLK)
and the Baud Rate Prescaler (BRP). Each segment is a multiple of the Time Quantum tq.
The length of these segments is programmable, with the exception of the Synchronisation
Segment, which is always 1 tq long.

 Figure 4: Bit Timing

 4.14.3 CC770 Bit Time Segments

The following are relationships of the CC770 bit timing:

bit time= tSyncSeg + tTSeg1 + tTSeg2 (see preceding figure)

tSyncSeg = 1 • tq
tTSeg1 = (TSeg1 + 1) • tq
tTSeg2 = (TSeg2 + 1) • tq
tq = (BRP + 1) • tSCLK

fBit = fXTAL / [(DSC + 1) • (BRP + 1) • (TSeg1 + TSeg2 + 3)]

The DSC bit is programmed in the CPU Interface Register, the variables TSeg1, TSeg2,
and Baud Rate Prescaler BRP are the programmed numerical values from the Bit Timing
Registers. The actual interpretation by the hardware of these values is such that one more
than the values programmed here is used, as shown in the brackets from the equations.

 4.14.4 Calculation of the Bit Time

The programming of the bit time has to regard the CAN Specification Rev. 2.0 and depends
on the desired baudrate, the CC770 oscillator frequency fXTAL and on the external physical

tSyncSeg tSyncSegtTSeg1 tTSeg2

1 bit time

1 time quantum
(tq)

Sample Point Transmit Point
BOSCH - 37/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_f

un
ct

io
na

l_
de

sc
rip

tio
n.

fm
delay times of the bus driver, of the bus line and of the input comparator. The delay times
are summarised in the Propagation Time Segment, its actual value tProp is:

tProp is two times the maximum of the sum of physical bus delay, the input compara-
tor delay, and the output driver delay rounded up to the nearest multiple of tq.

To fulfil the requirements of the CAN specification, the following conditions must be met :

tTSeg2 ≥ 1 • tq = Information Processing Time

tTSeg2 ≥ tSJW
tTSeg1 ≥ 2 • tq
tTSeg1 ≥ tSJW + tProp
tTSeg1 ≥ tSJW + tProp + 2tq for 3 Sample Mode (bit Spl="1" in register 4FH)

Note:

In order to achieve correct operation according to the CAN protocol the total bit time should
be at least 8 tq, i.e. TSeg1 + TSeg2 ≥ 5 (as programmed in the Bit Timing Register 1).

To operate with a baudrate of 1 MBit/s, the frequency of SCLK has to be at least 8 MHz, in
consequence fXTAL has to be at least 16 MHz.

The maximum tolerance df for XTAL depends on the Phase Buffer Segment1 (PB1), the
Phase Buffer Segment2 (PB2), and the Resynchronisation Jump Width (SJW):

df ≤
AND

df ≤

(PB1 = tTSeg1 - tProp ; PB2 = tTSeg2)

min PB1 PB2,()
2 13 bit time PB2–×()×

SJW
20 bit time×

BOSCH - 38/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_f

un
ct

io
na

l_
de

sc
rip

tio
n.

fm
 4.14.5 Example for Bit Timing at high Baudrate

Configuration:

fXTAL = 20 MHz, fSCLK = 10MHz (DSC=1), BRP = 0, bitrate should be 1 MBit/s.

tq 100 ns = tSCLK = tXTAL • 2

delay of bus driver 50 ns
delay of receiver circuit 30 ns
delay of bus line (40m) 220 ns = 520 ns, round up ↵
tProp 600 ns = 6 • tq
tSJW 100 ns = 1 • tq
tTSeg1 700 ns = tProp + tSJW

tTSeg2 200 ns = Information Processing Time + 1 • tq
tSync-Seg 100 ns = 1 • tq (fix)

bit time 1000 ns = tSync-Seg + tTSeg1 + tTSeg2

maximal oscillator tolerance 0.39 % =

=

In this example, the Bit Timing Registers must be programmed with the following values:

Bit Timing Register 0 (3FH): 00H

Bit Timing Register 1 (4FH): 16H

 4.14.6 Bit Timing Registers 0 + 1 (3FH + 4FH)

Bit Timing Registers are used to define the CAN bus frequency, the sample point within a
bit time, and the mode of synchronization.

Bit Timing Register 0 (3FH)

The default value of the Bit Timing Register 0 after a hardware reset is 00H.

SJW (Re) Synchronization Jump Width

The valid programmed values are 0-3. The SJW defines the maximum number
of time quanta a bit time may be shortened or lengthened by one resynchroni-
zation.

The actual interpretation of this value by the hardware is to use one more than
the programmed value.

7 6 5 4 3 2 1 0

SJW BRP

rw rw

min PB1 PB2,()
2 13 bit time PB2–×()×
--

0.1µs
2 13 1µs 0.2µs–×()×

BOSCH - 39/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_f

un
ct

io
na

l_
de

sc
rip

tio
n.

fm
BRP Baud Rate Prescaler

The valid programmed values are 0-63. The baud rate prescaler programs the
length of one time quantum as follows: tq = tSCLK • (BRP + 1) where tSCLK is the
period of the system clock (SCLK).

Bit Timing Register 1 (4FH)

The default value of the Bit Timing Register 1 after a hardware reset is 00H.

Spl Sampling Mode

one The CAN bus is sampled three times per bit time for determining the valid bit
value using majority logic.

zero Bus is sampled once, may result in faster bit transmissions rates.

Sampling mode = "0" may result in faster bit transmissions rates, while sampling mode = "1"
is more immune to noise spikes on the CAN bus.

TSeg2 Time Segment 2

The valid programmed values are 0-7. TSeg2 is the time segment after the
sample point.

The actual interpretation of this value by the hardware is one more than the
value programmed by the user.

TSeg1 Time Segment 1

The valid programmed values are 1-15. TSeg1 is the time segment before the
sample point.

The actual interpretation of this value by the hardware is one more than the
value programmed by the user.

4.15 Interrupt Register (5FH)

The default value of the Interrupt Register after a hardware reset is 00H.

7 6 5 4 3 2 1 0

Spl TSeg2 TSeg1

rw rw rw

7 6 5 4 3 2 1 0

IntId

r

BOSCH - 40/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_f

un
ct

io
na

l_
de

sc
rip

tio
n.

fm
IntId Interrupt Identifier

The Interrupt Register is a read-only register. The value in this register indicates the source
of the interrupt. When no interrupt is pending, this register holds the value "0". If the SIE bit
in the Control Register (00H) is set and the CC770 has updated the Status Register, the
Interrupt Register will contain a "1". This indicates an interrupt is pending due to a change
in the Status Register. The value 2 + Message Object Number indicates the IntPnd bit in the
corresponding Message Object is set. There is an exception in that Message Object 15 will
have the value 2, giving Message Object 15 the highest priority of all Message Objects.

For example, a message is received by Message Object 13 with the IE (Control Register)
and RxIE (Message Object 13 Control 0 Register) bits set. The interrupt pin will be pulled
low and the value 15 (0FH) will be placed in the Interrupt Register.

If the value of the Interrupt Register equals "1", then the Status Register at location 01H
must be read to update this Interrupt Register. The Status Change Interrupt has a higher
priority than interrupts from the Message Objects. Register 5FH is automatically set to "0"
or to the lowest value corresponding to a Message Object with IntPnd set. When the value
of this register is two or more, the IntPnd bit of the corresponding Message Object Control
Register is set.

Interrupt Source Value

none 00H

Status Register 01H

Message Object 15 02H

Message Object 1 03H

Message Object 2 04H

Message Object 3 05H

Message Object 4 06H

Message Object 5 07H

Message Object 6 08H

Message Object 7 09H

Message Object 8 0AH

Message Object 9 0BH

Message Object 10 0CH

Message Object 11 0DH

Message Object 12 0EH

Message Object 13 0FH

Message Object 14 10H

 Table 10: Interrupt Register values with corresponding Interrupt Sources
BOSCH - 41/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_f

un
ct

io
na

l_
de

sc
rip

tio
n.

fm
The CC770 will respond to each status change event independently and will not bundle
interrupt events in a single interrupt signal. However, if two status change events occur
before the first is acknowledged by the CPU, the next event will not generate a separate
interrupt output. Therefore, when servicing Status Change Interrupts, the user code should
check all useful status bits upon each Status Change Interrupt.

After resetting the IntPnd bit in the Control 0 Register of individual Message Objects, the
minimum delay of the CC770 resetting the interrupt pin and updating the Interrupt Register
(5FH) is 3 MCLK cycles and a maximum of 14 MCLK cycles (after the CPU write operation
to this register is finished). When a Status Change Interrupt occurs, reading the Status
Register (01H) will reset the interrupt pin in a maximum of 4 MCLK cycles + 145 ns. Clear-
ing the IntPnd bit of the Message Object will deactivate the INT# pin.

4.16 Serial Reset Address (FFH)

The serial reset address is used to synchronize accesses between the CC770 and the
CPU.

For example the CPU cannot provide a chip select signal, it is possible to write as many
ones into the CC770 SPI until you get the value "AAH" from the MISO pin. Then the CC770
is synchronized and data transfer could be started. For further informations see chapter 7.4.

4.17 CC770 Message Objects (MO)

 4.17.1 Message Object Structure

The Message Object is the means of communication between the host microcontoller and
the CAN controller in the CC770. Message Objects are configured to transmit or receive
messages.

There are 15 Message Objects located at fixed addresses in the CC770. Each Message
Object starts at a base address that is a multiple of 16 bytes and uses 15 consecutive
bytes. For example, Message Object 1 starts at address 10H and ends at address 1EH.
The remaining byte in the 16 byte field is used for other CC770 functions. In the above
example the byte at address 1FH is used for the ClkOut register.

Message Object 15 is a receive-only Message Object that uses a local mask called the
Message 15 Mask Register. This mask allows a large number of infrequent messages to be
received by the CC770. In addition, Message Object 15 is buffered to allow the CPU more
time to receive messages.

7 6 5 4 3 2 1 0

Serial Reset Address

w

BOSCH - 42/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_f

un
ct

io
na

l_
de

sc
rip

tio
n.

fm
 4.17.2 Control 0 + 1 Registers

Control 0 Register (Base Address + 0)

Control 1 Register (Base Address + 1)

The values of the Control 0 and Control 1 registers are not affected by a hardware reset.

Address Function

Base Address +0 Control 0

+1 Control 1

+2 Arbitration 0

+3 Arbitration 1

+4 Arbitration 2

+5 Arbitration 3

+6 Configuration

+7 Data 0

+8 Data 1

+9 Data 2

+10 Data 3

+11 Data 4

+12 Data 5

+13 Data 6

+14 Data 7

 Table 11: Message Object Structure

7 6 5 4 3 2 1 0

MsgVal TxIE RxIE IntPnd

rw rw rw rw

7 6 5 4 3 2 1 0

RmtPnd TxRqst MsgLst/CPUUpd NewDat

rw rw rw rw
BOSCH - 43/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_f

un
ct

io
na

l_
de

sc
rip

tio
n.

fm
Each bit in the Control 0 and Control 1 bytes occurs twice; once in true form and once in
complement form. This bit representation makes testing and setting these bits as efficient
as possible. The advantage of this bit representation is to allow write access to single bits of
the byte, leaving the other bits unchanged without the need to perform a read/modify/write
cycle.

For example, a CPU would set the TxRqst bit of the Control 1 byte with the following instruc-
tions:

...

MO_CTRL1.R EQU #0011 ;Message Object 1 Control 1 register

...

LDA #$EF ;set TxRqst of Message Object 1

STA MO_CTRL1.R ;

The representation of these two bits is described below:

MsgVal Message Valid

set The Message Object is valid.

reset The Message Object is invalid.

The MsgVal flag is an individual halt flag for each Message Object. While this flag is reset
the CC770 will not access this Message Object for any reason. This flag may be reset at
any time if the message is no longer required, or if the identifier is being changed. If a mes-
sage identifier is changed, the Message Object must be made invalid first, and it is not nec-
essary to reset the chip following this modification.

The CPU must reset the MsgVal flag of all unused messages during initialization of the
CC770 before the Init bit of the Control Register (00H) is reset. The contents of Message
Objects may be reconfigured dynamically during operation and the MsgVal flag assists
reconfiguration in many cases.

The MsgVal flag must be set to indicate the Message Object is configured and is ready for
communication transactions.

This flag is written by the CPU.

Direction MSB LSB Meaning

Write 0 0 not allowed (indeterminate)

0 1 reset

1 0 set

1 1 unchanged

Read 0 1 reset

1 0 set

 Table 12: Representation of bit pairs in Control Registers
BOSCH - 44/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_f

un
ct

io
na

l_
de

sc
rip

tio
n.

fm
IMPORTANT NOTE:

Two or more Message Objects must not have the same message identifier and also be valid
at the same time!

If more than one CC770 transmit Message Object has the same message ID, a successful
transmission of the higher numbered Message Objects will not be recognized by the
CC770. The lower numbered Message Object will be falsely identified as the transmit Mes-
sage Object and its transmit request flag will be reset. The actual transmit Message Object
will re-transmit without end because its transmit request flag will not be reset.

This could result in a catastrophic condition since the higher numbered Message Object
may dominate the CAN bus by resending its message without end.

To avoid this condition, applications should require all transmit Message Objects to use
message IDs that are unique. If this is not possible, the application should disable lower
numbered Message Objects with similar message IDs until the higher numbered Message
Object has transmitted successfully.

TxIE Transmit Interrupt Enable

set An interrupt will be generated after a successful transmission of a frame.

reset No interrupt will be generated after a successful transmission of a frame.

The Transmit Interrupt Enable flag enables the CC770 to initiate an interrupt after the suc-
cessful transmission by the corresponding Message Object.

This flag is written by the CPU.

RxIE Receive Interrupt Enable

set An interrupt will be generated after a successful reception of a frame.

reset No interrupt will be generated after a successful reception of a frame.

This flag enables the CC770 to initiate an interrupt after the successful reception by the cor-
responding Message Object.

This flag is written by the CPU.

NOTE:

In order for TxIE or RxIE to generate an interrupt, IE in the Control Register must be set.

IntPnd Interrupt Pending

set This Message Object has generated an interrupt.

reset No interrupt was generated by this Message Object since the last time the CPU
cleared this flag.

This flag is set by the CC770 following a successful transmission or reception as controlled
by the RxIE and TxIE flags.

The CPU must clear this flag when servicing the interrupt.
BOSCH - 45/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_f

un
ct

io
na

l_
de

sc
rip

tio
n.

fm
RmtPnd Remote Request Pending

set The transmission of this Message Object has been requested by a remote
node and is not yet done.

reset There is no waiting remote request for the Message Object.

This flag is only used by Message Objects with direction = transmit. This flag is set by the
CC770 after receiving a remote frame which matches its message identifier, taking into
account the Global Mask Register. The corresponding Message Object will respond by
transmitting a message, if the CPUUpd flag is reset. Following this transmission, the CC770
will clear the RmtPnd flag. In other words, when this flag is set it indicates a remote node
has requested data and this request is still pending because the data has not yet been
transmitted.

NOTE:

Setting RmtPnd will not cause a remote frame to be transmitted. The TxRqst flag is used to
send a remote frame from a receive Message Object.

TxRqst Transmit Request

set The transmission of this Message Object has been requested and has not been
completed.

reset This Message Object is not waiting to be transmitted.

This flag is set by the CPU to indicate the Message Object data should be transmitted. Set-
ting TxRqst will send a data frame for a transmit Message Object and a remote frame for a
receive Message Object.

If direction = receive a remote frame is sent to request a remote node to send the corre-
sponding data.

TxRqst is also set by the CC770 (at the same time as RmtPnd in Message Objects whose
direction = transmit) when it receives a remote frame from another node requesting this
data. This flag is cleared by the CC770 along with RmtPnd when the message has been
successfully transmitted, if the NewDat flag has not been set.

MsgLst Message Lost

Only valid for Message Objects with direction = receive.

set The CC770 has stored a new message in this Message Object when NewDat
was still set.

reset No message was lost since the last time this flag was reset by the CPU.

This flag is used to signal that the CC770 stored a new message into this Message Object
when the NewDat flag was still set. Therefore, this flag is set if the CPU did not process the
contents of this Message Object since the last time the CC770 set the NewDat flag; this
indicates the last message received by this Message Object overwrote the previous mes-
sage which was not read and is lost.

This definition is only valid for Message Objects with direction = receive. For Message
Objects with direction = transmit, the definition is replaced by CPUUpd.
BOSCH - 46/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_f

un
ct

io
na

l_
de

sc
rip

tio
n.

fm
CPUUpd CPU Updating

Only valid for Message Objects with direction = transmit.

set This Message Object may not be transmitted.

reset This Message Object may be transmitted, if direction = transmit.

The CPU sets this flag to indicate it is updating the data contents of the Message Object
and the message should not be transmitted until this flag has been reset. The CPU indi-
cates message updating has been completed by resetting this flag (it is not necessary to
use the MsgVal flag to update the Message Object’s data contents).

The purpose of this flag is to prevent a remote frame from triggering a transmission of
invalid data.

NewDat New Data

set The CC770 or CPU has written new data into the data section of this Message
Object.

reset No new data has been written into the data section of this Message Object
since the last time this flag was cleared by the CPU.

This flag has different meanings for receive and transmit Message Objects.

 4.17.3 Handling of Message Objects

For Message Objects with direction = receive, the CC770 sets the NewDat flag whenever
new data has been written into the Message Object.

When the received data is written into Message Objects 1-14, the unused data bytes will be
overwritten with non-specified values.

The CPU should clear the NewDat flag before reading the received data and then check if
the flag remained cleared when all bytes have been read. If the NewDat flag is set, the CPU
should re-read the received data to prevent working with a combination of old and new
data. See flow diagram in chapter 6.4.

When the received Data is matched to Message Object 15, new data is written into the
shadow register. The foreground register is not over-written with new data. For Message
Object 15 messages, the data should be read first, the IntPnd reset, and then the NewDat
and RmtPnd flags are reset. Resetting the NewDat and RmtPnd flags before resetting the
IntPnd flag will result the interrupt line remaining active. See flow diagram in chapter 6.5.

For Message Objects with direction = transmit, the CPU should set the NewDat flag to
indicate it has updated the message contents. This is done at the same time the CPU
clears the CPUUpd flag. This will ensure that if the message is actually being transmitted
during the time the message was being updated by the CPU, the CC770 will not reset the
TxRqst flag. In this way, the TxRqst flag is reset only after the actual data has been trans-
ferred. See flow diagram in chapter 6.3.

Each flag in the Control 0 and Control 1 registers may be set and reset by the CPU as
required.
BOSCH - 47/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_f

un
ct

io
na

l_
de

sc
rip

tio
n.

fm
Conditions required to trigger a transmission:

NOTES:

To initiate a transmission, the Control Register 1 of the Message Object should have the
TxRqst and NewDat flags set to "1". Therefore, this register may be written with the value
066H.

A remote frame may be received, an interrupt flag set, and no data frame transmitted in
response by configuring a Message Object in the following manner. Set the CPUUpd and
RxIE flags in the Message Object Control Register to "1". Set the Dir bit in the Message
Configuration Register to "1". A remote frame will be received by this Message Object, the
IntPnd flag will be set to "1" and no data frame will be sent in response.

Message Object Priority

If multiple Message Objects are waiting to transmit, the CC770 will first transmit the mes-
sage from the lowest numbered Message Object, regardless of message identifier priority.

If two Message Objects are capable of receiving the same message (possibly due to mes-
sage filtering strategies), the message will be received by the lowest numbered Message
Object. For example, if all acceptance mask bits were set as “don’t care”, Message Object 1
will receive all messages.

 4.17.4 Arbitration 0, 1, 2, 3 Registers

Arbitration 0 (Base Address + 2):

Arbitration 1 (Base Address + 3):

Flags Register Remote Frame Data Frame

Init Control 0

MsgVal MO-Control 0 set

TxRqst MO-Control 1 set

MsgLst/CPUUpd MO-Control 1 reset

NewDat MO-Control 1 don’t care should be set

Dir MO-Configuration 0 1

 Table 13: Bit combinations to start transmissions

7 6 5 4 3 2 1 0

ID28 ID27 ID26 ID25 ID24 ID23 ID22 ID21

rw rw rw rw rw rw rw rw

7 6 5 4 3 2 1 0

ID20 ID19 ID18 ID17 ID16 ID15 ID14 ID13

rw rw rw rw rw rw rw rw
BOSCH - 48/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_f

un
ct

io
na

l_
de

sc
rip

tio
n.

fm
Arbitration 2 (Base Address + 4):

Arbitration 3 (Base Address + 5):

The values of the Arbitration registers are not affected by a hardware reset.

Reserved bits read as "0".

ID0-ID28 Message Identifier

ID0-ID28 is the identifier for an extended frame.

ID18-ID28 is the identifier for a standard frame.

NOTE:

When the CC770 receives a message, the entire message identifier, the Data Length Code
(DLC), the Direction bit (Dir) and the Extended Identifier bit (Xtd) are stored (additionally to
the data section) into the corresponding Message Object.

 4.17.5 Configuration Register

Configuration (Base Address + 6):

The value of the Configuration register is not affected by a hardware reset.

Reserved bits read as "0".

7 6 5 4 3 2 1 0

ID12 ID11 ID10 ID9 ID8 ID7 ID6 ID5

rw rw rw rw rw rw rw rw

7 6 5 4 3 2 1 0

ID4 ID3 ID2 ID1 ID0 res

rw rw rw rw rw r

7 6 5 4 3 2 1 0

DLC Dir Xtd res

rw rw rw r
BOSCH - 49/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_f

un
ct

io
na

l_
de

sc
rip

tio
n.

fm
DLC Data Length Code

The valid programmed values are 0-8. The Data Length Code of a Message
Object is written with the value corresponding to the data length.

Dir Direction

one Direction = transmit. When TxRqst is set, the Message Object will be transmit-
ted.

zero Direction = receive. When TxRqst is set, a remote frame will be transmitted.
When a message is received with a matching identifier, the message will be
stored in the Message Object.

Xtd Extended Identifier

one This Message Object will use an extended 29 bit message identifier.

zero This Message Object will use a standard 11 bit message identifier.

If the Message Configuration Register bit Xtd is "0" to specify a standard frame, the CC770
will reset the extended bits in the Arbitration Registers (arbitration bits 0-17) to "0" whenever
a data frame is stored in this message object.

An extended receive Message Object (Xtd = "1") will not receive standard messages
(except if this bit is masked out, which is possible for Message Object 15 only).

If a Message Object receives a data frame from the CAN bus, the entire message identifier,
the Data Length Code (DLC), the Direction bit (Dir) and the Extended Identifier bit (Xtd) are
stored (additionally to the data section) into this Message Object. Therefore, if acceptance
filtering (masking registers) is used, the masked-off "don’t care" bits will be rewritten corre-
sponding to the message ID of the incoming message.

 4.17.6 Data Bytes

Data Bytes (Base Address + 7 ... Base Address + 14):

The values of the data byte 0-7 registers are not affected by a hardware reset.

When the CC770 writes new data into the message buffer, only the data bytes defined by
the DLC are valid. Unused data bytes will be overwritten by non-specified values.

7 6 5 4 3 2 1 0

data bytes 0,1,2,3,4,5,6,7

rw
BOSCH - 50/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_f

un
ct

io
na

l_
de

sc
rip

tio
n.

fm
4.18 Special Treatment of Message Object 15

Message Object 15 is a receive-only Message Object with a programmable local mask
called the Message 15 Mask Register. Since this Message Object is a receive only Mes-
sage Object, the TxRqst and the TxIE flags have been hardwired inactive and the CPUUpd
flag has no meaning.

The incoming messages for Message Object 15 will be written into a two-message alternat-
ing buffers to avoid the loss of a message if a second message is received before the CPU
has read the first message. Once Message Object 15 is read, it is necessary to reset the
NewDat and the RmtPnd flags to allow the CPU to read the shadow message buffer which
will receive the next message or which may already contain a new message.

If two messages have been received by Message Object 15, the first will be accessible to
the CPU. The alternate buffer will be overwritten if a subsequent (third receive) message is
received. Once again, after reading message 15, the user program should reset the IntPnd
flag followed by a reset of the NewDat and RmtPnd flags in the Message Object Control
Registers.

The Xtd bit in the Message Configuration Register determines whether a standard or an
extended frame will be received by this Message Object. This bit could be masked out, see
chapter 4.9.
BOSCH - 51/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_p

or
t_

re
gi

st
er

s.
fm
5. Port Registers

5.1 Port 1 Registers

P1CONF (9FH)

The default value of the P1CONF register after a hardware reset is 00H.

P1CONF 0-7 Port 1 Input/Output Configuration bits

one Port pin configured as a push-pull output.

zero Port pin configured as a high-impedance input.

P1IN (BFH)

The default value of the P1IN register after a hardware reset is FFH.

P1IN 0-7 Port 1 Data In

one A one (high voltage) is read from the pin.

zero A zero (low voltage) is read from the pin.

P1OUT (DFH)

The default value of the P1OUT register after a hardware reset is 00H.

P1OUT 0-7 Port 1 Data Out

one A logical one (high voltage) is written to the pin.

zero A logical zero (low voltage) is written to the pin.

7 6 5 4 3 2 1 0

P1CONF 0-7

rw

7 6 5 4 3 2 1 0

P1IN 0-7

rw

7 6 5 4 3 2 1 0

 P1OUT 0-7

rw
BOSCH - 52/84 - 17.11.03
spec_port_registers.fm

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_p

or
t_

re
gi

st
er

s.
fm
5.2 Port 2 Registers

P2CONF (AFH)

The default value of the P2CONF register after a hardware reset is 00H.

P2CONF 0-7 Port 2 Input/Output Configuration bits

one Port pin configured as a push-pull output.

zero Port pin configured as a high-impedance input.

P2IN (CFH)

The default value of the P2IN register after a hardware reset is FFH.

P2IN 0-7 Port 2 Data In

one A one (high voltage) is read from the pin.

zero A zero (low voltage) is read from the pin.

P2OUT (EFH)

The default value of the P2OUT register after a hardware reset is 00H.

P2OUT 0-7 Port 2 Data Out

one A logical one (high voltage) is written to the pin.

zero A logical zero (low voltage) is written to the pin.

7 6 5 4 3 2 1 0

P2CONF 0-7

rw

7 6 5 4 3 2 1 0

P2IN 0-7

rw

7 6 5 4 3 2 1 0

 P2OUT 0-7

rw
BOSCH - 53/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_f

lo
w

_d
ia

gr
am

s.
fm
6. FLOW DIAGRAMS

The following flowcharts describe the operation of the CC770 and suggested flows for the
host-CPU.

6.1 CC770 handling of Message Objects 1-14 (Transmit)

These are the operations the CC770 executes to transmit Message Objects. This diagram
is useful to identify when the CC770 sets bits in the Control Registers.

 Figure 5: CC770 handling of Message Objects 1-14 (Transmit)

bus free ?

NewDat := 0
load message

into shift register

transmission
successful?

NewDat=1
TxRqst := 0

IntPnd := 1

send message

yes

no

yes

yes

yes

yes

yes

no

no

no

TxRqst := 1
RmtPnd := 1

no

no

IntPnd := 1

yes

no
RxIE = 1

TxRqst=1

TxIE = 1

received remote frame
with matching identifier ?

DATA REMOTE

CPUUpd=0

RmtPnd := 0
BOSCH - 54/84 - 17.11.03
spec_flow_diagrams.fm

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_f

lo
w

_d
ia

gr
am

s.
fm
6.2 CC770 handling of Message Objects 1-14 (Receive)

These are the operations the CC770 executes to receive Message Objects. This diagram is
useful to identify when the CC770 sets bits in the Control Registers.

 Figure 6: CC770 handling of Message Objects 1-14 (Direction = Receive)

bus idle ?

TxRqst=1

NewDat := 0
load identifier and

control into shift register

transmission
successful?

TxRqst := 0
RmtPnd := 0

TxIE = 1

IntPnd := 1

send remote frame

yes

no

yes

yes

yes

yes

no

no

store message

no

TxIE = 1

IntPnd := 1

yes

no

RmtPnd := 0

no

NewDat = 1

no MsgLst := 1

yes

TxRqst := 0
NewDat := 1

received frame with
matching identifier to this

message object ?

REMOTE DATA

MsgLst =0
BOSCH - 55/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_f

lo
w

_d
ia

gr
am

s.
fm
6.3 CPU Handling of Message Objects 1-14 (Transmit)

These are the operations the host-CPU executes to transmit Message Objects 1-14.

 Table 14: CPU Handling of Message Objects 1-14 (Transmit)

Power Up (reset values)

want to sent ?

CPUUpd := 0

yes

CPUUpd := 1

write data bytes

no

Update Data Field

Initialisation

TxIE := (application specific)
RxIE := (application specific)
IntPnd := 0
RmtPnd := 0
TxRqst := 0
CPUUpd := 1

Identifier := (application specific)
DLC := (application specific)
Dir := transmit
Xtd := (application specific)
MsgVal := 1

NewDat := 1

update message ?

TxRqst := 1

no

yes

NewDat := 0
BOSCH - 56/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_f

lo
w

_d
ia

gr
am

s.
fm
6.4 CPU Handling of Message Objects 1-14 (Receive)

These are the operations the host-CPU executes to receive Message Objects 1-14.

 Table 15: CPU Handling of Message Objects 1-14 (Receive)

Power Up (reset values)

NewDat =1 ?
no

Process Messages

Initialisation

request update ?

TxRqst := 1

no

yes
NewDat := 0

read message

yes

TxIE := (application specific)
RxIE := (application specific)
IntPnd := 0
RmtPnd := 0
TxRqst := 0
MsgLst := 0

Identifier := (application specific)
DLC := (don’t care)
Dir := receive
Xtd := (application specific)
MsgVal := 1

NewDat := 0

NewDat =0 ?

process message

no

yes
BOSCH - 57/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_f

lo
w

_d
ia

gr
am

s.
fm
6.5 CPU Handling of Message Object 15 (Receive)

These are the operations the host-CPU executes to receive Message Object 15.

 Figure 7: CPU Handling of Message Object 15 (Receive)

Power Up (reset values)

New Dat = 1 ?

IntPnd := 0

yes

Message 15 Mask :=(application specific)

NewDat := 0

read and process message

RmtPnd := 0

no

Process Message

Initialisation

Toggle to
alternative buffer

RxIE := (application specific)
IntPnd := 0
RmtPnd := 0
MsgLst := 0
NewDat := 0

Identifier := (application specific)
DLC := (don’t care)
Dir := receive
Xtd := (application specific)
MsgVal := 1
BOSCH - 58/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_c

pu
_i

nt
er

fa
ce

_l
og

ic
.fm
7. CPU Interface Logic

The CIL (CPU Interface Logic) is a flexible interface between the CPU and the CC770 RAM.
The CIL allows a direct serial interface or parallel interface connection to the CC770 for
most commonly used CPUs. Therefore it converts serial or parallel address/control/data
signals from the CPU into parallel read and write accesses to the internal memory bus.

The internal memory bus is a non-multiplexed parallel bus that is used by both the CIL and
the CAN Controller to read and write to the Message Memory.

7.1 CPU Interface Description

There are five CPU interface modes used to interface a CPU to the CC770. These include
four parallel interface modes (mode 0 to mode 3) and one serial interface mode (SPI).

While RESET# is active, the two mode pins (MODE0, MODE1) select one of the following
interface modes:

Note:

The MODE0 and MODE1 inputs are weakly pulled low while RESET# is active, but they
have high impedance after reset. Therefore they must be driven to a valid logical value after
reset.

7.2 Parallel Interfacing Techniques

Mode 0

Mode 0 is intended to interface to Intel architectures (ALE, RD#, WR#) using an 8-bit multi-
plexed address/data bus. A READY output is provided to force wait states in the CPU.

Mode 1

Mode 1 is intended to interface to Intel architectures (ALE, RD#, WR#) using a 16-bit multi-
plexed address/data bus. A READY output is provided to force wait states in the CPU.

Mode 2

Mode 2 is intended to interface to Motorola architectures (AS, E, R/W#) using an 8-bit mul-
tiplexed address/data bus.

Mode1 Mode0 Interface Mode

0 0 Mode 0: 8-bit multiplexed Intel architecture
If both WR# and RD# are driven low during reset,
the SPI mode is selected instead of Mode 0.

0 1 Mode 1: 16-bit multiplexed Intel architecture

1 0 Mode 2: 8-bit multiplexed Motorola architecture

1 1 Mode 3: 8-bit non-multiplexed Motorola architecture

 Table 16: CPU interface modes
BOSCH - 59/84 - 17.11.03
spec_cpu_interface_logic.fm

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_c

pu
_i

nt
er

fa
ce

_l
og

ic
.fm
Mode 3

Mode 3 is intended to interface to Motorola architectures using an 8-bit non-multiplexed
address/data bus. The asynchronous mode uses R/W#, CS#, and DSACK0# (E=1). The
synchronous mode uses R/W#, CS#, and E. Mode 3 uses the address/data bus as the
address bus and Port 1 as the data bus.

For CPUs which do not provide a READY or DSACK0# input and do not meet the address/
data bus timing restrictions, a double read mechanism must be used. When writing to the
CC770 the programmer must ensure that the time between two consecutive write accesses
is not less than two memory clock (MCLK) cycles. When reading the CC770, a double read
is programmed. The first read will be to the message object memory address and the sec-
ond read will be to the High Speed Read register (04H, 05H). After the first CPU read
access, the CC770 stores the data contents to the High Speed Read register for the second
read.

7.3 Serial Interface Techniques

The serial interface on the CC770 is fully compatible to the SPI protocol of Motorola and will
interface to most commonly used serial interfaces. The serial interface is implemented in
slave mode only, and responds to the master using the specially designed serial interface
protocol. This serial interface allows an interconnection of several CPU’s and peripherals on
the same circuit board.

 Figure 8: Interconnection for serial communication

MOSI: Master Out Slave In

The MOSI pin is the data output of the master device (CPU) and the data input
of the slave device (CC770). Data is transferred serially from the master to the
slave on the signal line, with the most significant bit first and least significant bit
last.

MISO: Master In Slave Out

The MISO pin is the data output of the slave device (CC770) and the input of
the master device (CPU). Data is transferred serially from the slave to the mas-
ter on the signal line, with the most significant bit first and least significant bit
last.

CS#: Chip Select (used as Slave Select for the SPI interface)

An asserted state on the slave select input (CS#) enables the CC770 to accept
data on the MOSI pin. The CS# must not toggle during data transfer.

The CC770 will only drive data to the serial data register if CS# is at asserted
state.

MOSI
MISO

SPICLK
CS#

MOSI
MISO
SPICLK
CS#

CPU
(master)

CC750
(slave)
BOSCH - 60/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_c

pu
_i

nt
er

fa
ce

_l
og

ic
.fm
SPICLK: Serial Clock

The master device provides the serial clock for the slave device. Data is trans-
ferred synchronously to this clock in both directions. The master and the slave
devices exchange a data byte during a sequence of eight clock pulses.

7.4 Serial Interface Protocol

The general format of the data exchange from the CC770 to the master is a bit-for-bit
exchange on each SPICLK clock pulse. Bit exchanges in multiples of 8 bits and up to 15
bytes of data are allowed. A maximum of 17 bytes can be send to the CC770-SPI, including
one address byte, one SPI Control Byte, and 15 data bytes.

At the beginning of a transmission over the serial interface, the first byte will be the address
of the CC770 special function register or the CC770 RAM to be accessed. The next byte
transmitted is a Control Byte, which contains the number of bytes to be transmitted and
whether this is to be a read or write access to the CC770. These first two bytes are followed
by the data bytes (1 to 15).

To ensure the CC770 device is not out of synchronization, the CC770 will transmit the val-
ues "AAH" and then "55H" through the MISO pin while the master transmits the Address
and Control Byte. The master may check for the reception of these bytes.

If the master did not receive the first synchronization byte ("AAH"), the Data transmitted
since the last reception of the synchronization bytes are invalid. The CPU should abort the
actual transmission. The CC770 can be re-synchronised by transmitting an FFH byte (SPI
Reset Address).

If the master receive the first synchronization byte ("AAH") but not the second one ("55H"),
the transmission of the address was disturbed. The CPU should abort the actual transmis-
sion in order to prevent data loss through transmission or reception of data from wrong
addresses. The CC750 can be re-synchronised by transmitting an FFH byte (SPI Reset
Address).

When the SPI receives an Address or Control byte with the value FFH, the SPI interface will
be reset. In this case, the SPI will assume the next byte is an address.

AD0 (ICP) Idle Clock Polarity

one SCLK is idle high.

zero SCLK is idle low.

AD1 (CP) Clock Phase

one Data sampled on the falling edge of SCLK (ICP = 0) or data is sampled on the
rising edge of SCLK (ICP = 1).

zero Data is sampled on the rising edge of SCLK (ICP = 0) or data is sampled on the
falling edge of SCLK (ICP = 1).

AD2 (CSAS) Chip select active state

one Asserted state of CS# is logic high.
BOSCH - 61/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_c

pu
_i

nt
er

fa
ce

_l
og

ic
.fm
zero Asserted state of CS# is logic low.

AD3 (STE) Synchronization Transmission Enable

one The first two bytes which will be sent to the CPU after CS# is asserted are AAH
and 55H.

zero The first two bytes which will be sent to the CPU after CS# is asserted are 00H
and 00H.

Enables the transmission of the synchronization bytes while the Address and Control Bytes
are transferred.

 Figure 9: Serial data communication

7.5 Serial Control Byte

The Serial Control Byte is transmitted by the CPU to the CC770 as follows:

Dir Serial transmission direction

zero The data bytes will be read, so the CC770 will transfer information to the CPU.

one The data bytes will be sent from the CPU to the CC770.

Sync Synchronisation

These three bits must always be sent as "000".

SDLC Serial Data Length Code

These four bits contains the number of bytes to be transmitted. Valid pro-
grammed values are 1-15.

7 6 5 4 3 2 1 0

Dir Sync SDLC

sample points
ICP CP

0

1

0

0

1 0

1 1

MSB LSB
BOSCH - 62/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_c

pu
_i

nt
er

fa
ce

_l
og

ic
.fm
The first data byte (third byte of the SPI protocol) will be written to or read from the CC770
address (first byte of the SPI protocol). After this, the address is incremented by the SPI
logic and the next data byte is written or read from this address. In one data stream, a max-
imum of 15 data bytes can be transferred. A DLC of zero is not allowed. After a DLC of zero
is received, the SPI must be resynchronized. The SPI must also be resynchronized if one of
the Synchronisation Bits was received as "1".

When the CPU conducts a READ, the CPU sends an address byte and a Serial Control
Byte. While the CC770 responds back with data, it ignores the MOSI pin (transmission from
the CPU).

The CPU may transmit the next address and Serial Control Byte after CS# is de-activated
and then re-activated. This means the chip select should be activated and de-activated for
each read or write transmission.

Synchronization bytes must be monitored carefully. For example, if the CC770 does not
transmit the AAH and 55H synchronization bytes correctly, then the previous transmission
may be incorrect too. The MISO pin is tri-stated if CS# is inactive.

 Figure 10: CC770 SPI Interface Schematic

The MODE0 and MODE1 pins may be left open since they are weakly pulled low during
reset.

MOSI
MISO
SCLK

CS#

CPU
(master)

CC770
(slave)

Int Request
Reset#

MOSI
MISO
SCLK
CS#

Int Request
Reset#

AD0
AD1
AD2
AD3
RD#
WR#
XTAL1
XTAL2

Vss
Vss

application
specific

Vcc

MODE0
MODE1Vss

Vss
BOSCH - 63/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
7/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_e

_c
ha

ra
ct

er
is

tic
s.

fm
8. Electrical Specification

8.1 Handling Instructions

Handle with extreme care. Pins should not be touched. Follow ESD (Electrostatic Dis-
charge) protection procedure.

8.2 Absolute Maximum Ratings

Functional operation under any of these conditions is not implied. Operation beyond the lim-
its in this table may impair the lifetime of the device.

Note:

For the conditions listed above the IC is protected against latch up effects.

*Category:
A Parameter measured as analog value in series test program.
B Parameter tested as go/nogo test in series test program.
C Characterized only or guaranteed by design.

8.3 DC-Characteristics

Conditions: VCC = 5V ±10%, TA = -40°C to +125°C

Parameter Value Cat*

Maximum rise-time of Supply-Voltage 1 V/µs C

Maximum Supply-Voltage (VCC-VSS) - 0.5 V to +7.0 V C

Maximum current at all inputs/outputs ± 25 mA C

Protection of inputs/outputs against ESD (HBM) ± 800V (1.5 kΩ,100 pF) C

Storage temperature -40°C to +150°C C

 Table 17: Absolute Maximum Ratings

Parameter Min Max Unit Conditions Cat

VIL Input Low Voltage -0.5 0.8 V B

VIH Input High Voltage (All
inputs except RESET#)

3.0 VCC+0.5 V B

VIH1 Input High Voltage RESET#
Hysteresis on RESET#

3.0
200

VCC+0.5 V
mV

B
A

VOL Output Low Voltage 0.45 V IOL = 1.6 mA A

 Table 18: DC-Characteristics
BOSCH - 64/84 - 17.11.03

spec_e_characteristics.fm

Target Specification Rev. 1.3CC770
06

1.
7/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_e

_c
ha

ra
ct

er
is

tic
s.

fm
(1) Typical value based on characterization data.

(2) All pins are driven to VSS or VCC, VCC = 5V, fXTAL = 16 MHz, fMCLK = 8 MHz

8.4 CLOCKOUT Specification

8.5 A.C. Characteristics

 8.5.1 AC-Characteristics for 8/16-Bit Multiplexed Intel Modes (Modes 0, 1)

Conditions: VCC = 5V ±10%, VSS = 0V, TA = -40 to +125°C, CL = 100 pF

VOH Output High Voltage VCC-0.8 V IOH = -200 µA A

ILK Input Leakage Current ±1 µA VSS<VIN<VCC A

CIN Pin Capacitance(1) 10 pF fXTAL = 1 kHz C

ICC Supply Current(2) 50 mA A

ISLEEP Sleep Current, no Load(2) 100 µA A

IPD Power down Current(2) 25 µA XTAL1 clocked A

Parameter Min Max Conditions Cat

CLOCKOUT Frequency XTAL/15 XTAL load = 50 pF B

 Table 19: CLOCKOUT Specification

Symbol Parameter Min Max Conditions Cat

1/tXTAL Oscillator Frequency (1) 8 MHz 20 MHz B

1/tSCLK System Clock Frequency 4 MHz 10 MHz B

1/tMCLK Memory Clock Frequency 2 MHz 8 MHz B

tAVLL Address Valid to ALE Low 7.5 ns B

tLLAX Address Hold after ALE Low 10 ns B

tLHLL ALE High Time 30 ns B

tLLRL ALE Low to RD# Low 20 ns B

tCLLL CS# Low to ALE Low 10 ns B

tQVWH Data Setup to WR# High 27 ns B

 Table 20: A.C. Characteristics for 8/16-Bit Multiplexed Intel Modes (Modes 0, 1)

Parameter Min Max Unit Conditions Cat

 Table 18: DC-Characteristics
BOSCH - 65/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
7/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_e

_c
ha

ra
ct

er
is

tic
s.

fm
NOTES:

References to WR# also pertain to WRH# (write high byte) .

1. The XTAL frequency may be lower than 8 MHz when the crystal at the XTAL pins is
replaced by a clock generator and the PLL is disabled, see chapter 4.4.

tWHQX Input Data Hold after WR# high 10 ns B

tWLWH WR# Pulse Width 30 ns B

tWHLH WR# High to next ALE High 8 ns B

tWHCH WR# High to CS# High 0 ns B

tRLRH RD# Pulse Width
This time is long enough to initiate a
double read cycle by loading the High
Speed Registers (04H, 05H), but is too
short to READ from 04H and 05H
(See tRLDV)

40 ns B

tRLDV RD# Low to Data Valid
(only for registers 02H, 04H, 05H)

0 ns 55 ns B

tRLDV1 RD# Low Data to Data Valid
(for registers except 02H, 04H, 05H)
Read Cycle without previous write (2)

Read Cycle with previous write (2)
1.5tMCLK+100ns
3.5tMCLK+100ns

B

tRHDZ Data Float after RD# High 0 ns 45 ns B

tCLYV CS# Low to READY Setup
Condition: Load Cap. on the READY
output: 50 pF

32 ns
40 ns

VOL=1.0V
VOL=0.45V

B

tWLYZ WR# Low to READY Float
for a write cycle if no previous write is
pending (3)

145 ns B

tWHYZ End of Last Write to READY
Float
for a write cycle if a previous write cycle
is active (3)

2tMCLK +100ns B

tRLYZ RD# Low to READY Float
(for registers except 02H, 04H, 05H)
read cycle without previous write (2)

read cycle with a previous write (2)
2tMCLK+100ns
4tMCLK+100ns

B

tWHDV WR# High to Output Data Valid
on port 1/2

tMCLK 2tMCLK+500ns B

tCOPD CLKOUT Period (CDV + 1) ∗ tOSC
(4) C

tCHCL CLKOUT High Period (CDV+1)∗ 0.5∗
tOSC-10ns

(CDV+1)∗
0.5∗ tOSC+15ns

C

Symbol Parameter Min Max Conditions Cat

 Table 20: A.C. Characteristics for 8/16-Bit Multiplexed Intel Modes (Modes 0, 1)
BOSCH - 66/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
7/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_e

_c
ha

ra
ct

er
is

tic
s.

fm
2. Definition of ‘‘read cycle without a previous write’’:

The time between the rising edge of WR#/WRH# (for the previous write cycle) and the
falling edge of RD# (for the current read cycle) is greater than 2 tMCLK .

3. Definition of ‘‘write cycle with a previous write’’:

The time between the rising edge of WR#/WRH# (for the previous write cycle) and the
rising edge of WR#/WRH# (for the current write cycle) is less than 2 tMCLK .

4. Definition of CDV is the value loaded in the CLKOUT register representing the CLKOUT
divisor.

 Figure 11: Timing for 8/16-Bit Multiplexed Intel Modes (Modes 0, 1)

tCLLL

tAVLL

Address

tRLDV tRHDZ

tRLRH tWHCH

tLHLL

tLLAX

ALE

BUS

RD#

CS#

WR#

BUS

PORT1/2

Address Data in

Data out

tWLWH tWHLH

tQVWH tWHQX

tWHDV

tLLRL
BOSCH - 67/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
7/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_e

_c
ha

ra
ct

er
is

tic
s.

fm
 Figure 12: Ready Output Timing (write cycle, no previous write is pending)

 Figure 13: Ready Output Timing (write cycle, previous write cycle is active)

 Figure 14: Ready Output Timing for a Read Cycle

CS#

Ready

WR#

tWLYZtCLYV

CS#

Ready

WR#

tWHYZ

CS#

RD#

ALE

Ready

tCLYV

tRLYZ
BOSCH - 68/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
7/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_e

_c
ha

ra
ct

er
is

tic
s.

fm
 8.5.2 A.C. Characteristics for 8-Bit Multiplexed Motorola Mode (Mode 2)

Conditions: VCC = 5V ±10%, VSS = 0V, TA = -40 C to +125 °C, CL = 100 pF

NOTES:

1. The XTAL frequency may be lower than 8 MHz when the crystal at the XTAL pins is
replaced by a clock generator and the PLL is disabled, see chapter 4.4.

2. Definition of ‘‘Read Cycle without a Previous Write’’:

The time between the falling edge of E (for the previous write cycle) and the rising edge
of E (for the current read cycle) is greater than 2 tMCLK .

Symbol Parameter Min Max Cat

1/tXTAL Oscillator Frequency (1) 8 MHz 20 MHz B

1/tSCLK System Clock Frequency 4 MHz 10 MHz B

1/tMCLK Memory Clock Frequency 2 MHz 8 MHz B

tAVSL Address Valid to AS Low 7.5 ns B

tSLAX Address Hold after AS Low 10 ns B

tELDZ Data Float after E Low 0 ns 45 ns B

tEHDV E High to Data Valid for registers 02H,
04H, 05H

0 ns 45 ns B

read cycle without a previous write (2)

read cycle with a previous write
(registers except for 02H, 04H, 05H)

1.5tMCLK+100ns
 3 tMCLK+100ns

B

tQVEL Data Setup to E Low 30 ns B

tELQX Input Data Hold after E Low 20 ns B

tELDV E Low to Output Data Valid port 1/2 tMCLK 2tMCLK+500ns B

tEHEL E High Time 45 ns B

tELEL End of previous write (Last E Low) to
E Low for a write cycle

2 tMCLK B

tSHSL AS High Time 30 ns B

tRSEH Setup Time of R/W# to E High 30 ns B

tSLEH AS Low to E High 20 ns B

tCLSL CS# Low to AS Low 20 ns B

tELCH E Low to CS# High 0 ns B

tCOPD CLKOUT Period (CDV + 1) ∗ tOSC
(3) C

tCHCL CLKOUT High Period (CDV + 1)∗
0.5∗ tOSC-10ns

(CDV + 1)∗
0.5∗ tOSC+15ns

C

 Table 21: A.C. Characteristics for 8-Bit Multiplexed Motorola Mode (Mode 2)
BOSCH - 69/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
7/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_e

_c
ha

ra
ct

er
is

tic
s.

fm
3. Definition of CDV is the value loaded in the CLKOUT register representing the CLKOUT
divisor.

 Figure 15: Timing for 8-Bit Multiplexed Motorola Mode (Mode 2)

tCLSL

tAVSL

Address

tEHDV tELDZ

tEHEL

tRSEH

tSHSL

tSLAX

AS

BUS

E

CS#

R/W#

BUS

PORT1/2

Address Data in

Data out

tQVEL tELQX

tELDV

tSLEH

tELCH

R/W#
BOSCH - 70/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
7/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_e

_c
ha

ra
ct

er
is

tic
s.

fm
 8.5.3 A.C. Characteristics for 8-Bit Non-Multiplexed Asynchronous (Mode 3)

Conditions: VCC = 5V ±10%, VSS = 0V, TA = -40 C to +125 °C, CL = 100 pF

Symbol Parameter Min Max Cat

1/tXTAL Oscillator Frequency (1) 8 MHz 20 MHz B

1/tSCLK System Clock Frequency 4 MHz 10 MHz B

1/tMCLK Memory Clock Frequency 2 MHz 8 MHz B

tAVCL Address or R/W# Valid to CS# Low
Setup

3ns B

tCLDV CS# Low to Data Valid for High
Speed Registers (02H, 04H, 05H)

0 ns 55 ns B

For Low Speed Registers (Read
Cycle without Previous Write) (2)

0 ns 1.5 tMCLK +100 ns B

For Low Speed Registers (Read
Cycle with Previous Write) (2)

0 ns 3.5 tMCLK +100 ns B

tKLDV DSACK0# Low to Output Data Valid
for High Speed Read Register

23 ns B

For Low Speed Read Register < 0 ns B

tCHDV CC770 Input Data Hold after CS#
High

15 ns B

tCHDH CC770 Output Data Hold after CS#
High

0 ns B

tCHDZ CS# High to Output Data Float 35 ns B

tCHKH1 CS# High to DSACK0# = 2.4V (3) 0 ns 55 ns B

tCHKH2 CS# High to DSACK0# = 2.8V 150 ns B

tCHKZ CS# High to DSACK0# Float 0 ns 100 ns B

tCHCL CS# Width between Successive
Cycles

25 ns B

tCHAI CS# High to Address Invalid 7 ns B

tCHRI CS# High to R/W# Invalid 5 ns B

tCLCH CS# Width Low 65 ns B

tDVCH CPU Write Data Valid to CS# High 20 ns B

tCLKL CS# Low to DSACK0# Low for High Speed
Registers and Low Speed Registers Write
Access without Previous Write (4)

0 ns 67 ns B

 Table 22: A.C. Characteristics for 8-Bit Non-Mux Asynchronous (Mode 3)
BOSCH - 71/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
7/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_e

_c
ha

ra
ct

er
is

tic
s.

fm
NOTES:

E and AS must be tied high in this mode.

1. The XTAL frequency may be lower than 8 MHz when the crystal at the XTAL pins is
replaced by a clock generator and the PLL is disabled, see chapter 4.4.

2. Definition of ‘‘Read Cycle without a Previous Write’’:

The time between the rising edge of CS# (for the previous write cycle) and the falling
edge of CS# (for the current read cycle) is greater than 2 tMCLK .

3. An on-chip pullup will drive DSACK0# to approximately 2.4V. An external pullup is
required to drive this signal to a higher voltage.

4. Definition of ‘‘Write Cycle without a Previous Write’’:

The time between the rising edge of CS# (for the previous write cycle) and the rising
edge of CS# (for the current write cycle) is greater than 2 tMCLK .

5. Definition of CDV is the value loaded in the CLKOUT register representing the CLKOUT
divisor.

tCHKL End of previous write (CS# High) to
DSACK0# Low for a write cycle with
a previous write (4)

0 ns 2 tMCLK + 145
ns

B

tCOPD CLKOUT Period (CDV + 1) ∗ tOSC
(5) C

tCHCL CLKOUT High Period (CDV + 1)∗
0.5∗ tOSC-10ns

(CDV + 1) ∗
0.5∗ tOSC+15ns

C

Symbol Parameter Min Max Cat

 Table 22: A.C. Characteristics for 8-Bit Non-Mux Asynchronous (Mode 3)
BOSCH - 72/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
7/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_e

_c
ha

ra
ct

er
is

tic
s.

fm
 Figure 16: Timing for 8-Bit Non-Mux Asynchronous Mode (Mode 3), read cycle.

 Figure 17: Timing for 8-Bit Non-Mux-Async Mode (Mode 3), write cycle.

Address

tCLDV

tAVCL tCLCH tCHCL

tCHDZ

tCHDH

tCLKL tKLDV

tCHKH

tCHKZ

tCHAI

Data

CS#

R/W#

DSACK0#

Address

tAVCL tCLCH tCHCL

tCHDV

tCLKL

tCHKH

tCHKZ

tCHAI

Data

CS#

R/W#

DSACK0#

tDVCH
BOSCH - 73/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
7/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_e

_c
ha

ra
ct

er
is

tic
s.

fm
 8.5.4 A.C. Characteristics for 8-Bit Non-Multiplexed Synchronous (Mode 3)

Conditions: VCC = 5V ±10%, VSS = 0V, TA = -40 C to +125 °C, CL = 100 pF

NOTES:
1. The XTAL frequency may be lower than 8 MHz when the crystal at the XTAL pins is

replaced by a clock generator and the PLL is disabled, see chapter 4.4.

Symbol Parameter Min Max Cat

1/tXTAL Oscillator Frequency (1) 8 MHz 20 MHz B

1/tSCLK System Clock Frequency 4 MHz 10 MHz B

1/tMCLK Memory Clock Frequency 2 MHz 8 MHz B

tEHDV E High to Data Valid out of High
Speed Register (02H, 04H, 05H)

55 ns B

Read Cycle without previous
write for Low Speed Registers (2)

1.5 tMCLK +100 ns B

Read Cycle with previous write
for Low Speed Registers (2)

3.5 tMCLK +100 ns B

tELDH Data Hold after E Low for a read
cycle

5 ns B

tELDZ Data Float after E Low 35 ns B

tELDV Data Hold after E Low for a write
cycle

15 ns B

tAVEH Address and R/W# to E setup 25 ns B

tELAV Address and R/W# Valid after E
falls

15 ns B

tCVEH CS# Valid to E High 0 ns B

tELCV CS# Valid after E Low 0 ns B

tDVEL Data Setup to E Low 55 ns B

tEHEL E Active width 100 ns B

tAVAV Start of a write cycle after a pre-
vious Write Access

2 tMCLK B

tAVCL Address or R/W# to CS# Low
Setup

3 ns B

tCHAI CS# High to Address Invalid 7 ns B

tCOPD CLKOUT Period (CDV + 1) ∗ tOSC
(3) C

tCHCL CLKOUT High Period (CDV + 1)∗
0.5∗ tOSC-10ns

(CDV + 1)∗
0.5∗ tOSC+15ns

C

 Table 23: A.C. Characteristics for 8-Bit Non-Mux Asynchronous (Mode 3)
BOSCH - 74/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
7/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_e

_c
ha

ra
ct

er
is

tic
s.

fm
2. Definition of ‘‘Read Cycle without a Previous Write’’:

The time between the falling edge of E (for the previous write cycle) and the rising edge
of E (for the current read cycle) is greater than 2 tMCLK .

3. Definition of CDV is the value loaded in the CLKOUT register representing the CLKOUT
divisor.

 Figure 18: Timing for 8-Bit Non-Mux Synchronous Mode (Mode 3), read cycle.

 Figure 19: Timing for 8-Bit Non-Mux Synchronous Mode (Mode 3), write cycle.

Address

tAVCL tCHAI

tELAV

Data

CS#

R/W#

tCVEH

tAVEH

tEHEL

tELDZ

tELDH

tEHDV

tELCV

E

Address

tAVCL
tCHAI

tELAV

Data

CS#

R/W#

tCVEH

tAVEH

tEHEL

tELDVtDVEL

tELCV

E

tAVAV
BOSCH - 75/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
7/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_e

_c
ha

ra
ct

er
is

tic
s.

fm
 8.5.5 A.C. Characteristics for Serial Interface Mode

Conditions: VCC = 5V ±10%, VSS = 0V, TA = -40°C to +125°C, CL = 100 pF

NOTE:

1. The XTAL frequency may be lower than 8 MHz when the crystal at the XTAL pins is
replaced by a clock generator and the PLL is disabled, see chapter 4.4.

2. Definition of CDV is the value loaded in the CLKOUT register representing the CLKOUT
divisor.

Symbol Parameter Min Max Unit Cat

fXTAL Oscillator Frequency (1) 8 20 MHz B

fSCLK System Clock Frequency 4 10 MHz B

fMCLK Memory Clock Frequency 2 8 MHz B

fSPICLK SPI Clock Frequency 0.5 fMCLK MHz B

tCYC 1/fSPICLK 125 2000 ns B

tSKHI Clock High Time 45 ns B

tSKLO Clock Low Time 45 ns B

tLEAD Enable Lead Time 70 ns B

tLAG Enable Lag Time 70 ns B

tACC Access Time 60 ns B

tPDO Data Out Delay Time 30 ns B

tHO Data Out Hold Time 0 ns B

tDIS Data Out Disable Time 125 ns B

tSETUP Data Setup Time 25 ns B

tHOLD Data Hold Time 25 ns B

tRISE Input Rise Time 45 ns C

tFALL Input Fall Time 45 ns C

tCS Chip Select High Time 125 ns B

tCOPD CLKOUT Period (CDV+ 1) ∗ tOSC
(2) ns C

tCHCL CLKOUT High Period (CDV+ 1) ∗
0.5∗ tOSC-10

(CDV+ 1) ∗
0.5∗ tOSC+15

ns C

 Table 24: A.C. Characteristics for Serial Interface Mode
BOSCH - 76/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
7/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_e

_c
ha

ra
ct

er
is

tic
s.

fm
 Figure 20: Timing for Serial Interface Mode (Polarity=0,Phase=0)

 Figure 21: Timing for Serial Interface Mode (Polarity=1,Phase=1)

tHOLD

CS#

SPICLK

MISO

MOSI

tSKLO tFALLtCYC

tLEAD

tRISE

tACC

tSETUP

tLAG tCS

tDIS

tSKHI

tPD0tHO

tHOLD

CS#

SPICLK

MISO

MOSI

tLEAD

tACC

tSETUP

tLAG tCS

tDIS

tFALL tSKLO tSKHI tCYC tRISE

tPDOtHO
BOSCH - 77/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
7/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_e

_c
ha

ra
ct

er
is

tic
s.

fm
 8.5.6 Waveforms for testing

 Figure 22: Input and output reference waveforms

VCC

VSS

Output

Input

Timing parameter

A.C. test inputs are driven at the VCC and VSS
levels.

A.C. test outputs are measured at 1/2 VCC.

Input rise and fall times (10%/90%) < 10ns

1/2VCC
BOSCH - 78/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_e

rr
at

a.
fm
9. Stepping specific errata

The subject of this paragraph is to describe functional and electrical divergences of the
CC770D (this means CC770 with stepping D) to this Target Specification.

9.1 Identification of affected devices

 9.1.0.1 PLCC44 package

The first line of the top-side marking, right beside the Bosch anchor, denotes the product
number.

All devices with the product number 30480 are affected by the errata described in this chap-
ter.

 9.1.1 Chip on wafer

In the edge, located by the AD6 and AD7 pads, the product designator is readable in metal
3 layer.

All devices with the designator CC770D are affected by the errata described in this chapter.
BOSCH - 79/84 - 17.11.03
spec_errata.fm

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_e

rr
at

a.
fm
9.2 Errata

 9.2.1 Glitches on DSACK0# pin

 9.2.1.1 Description

This erratum is only relevant for applications which uses the 8-bit non multiplexed address
data bus interface (interface mode 3) of the CC770 to connect a micro controller.

In this interface mode, DSACK0# signal marks valid data for read accesses to the CC770.
When accessing the high speed read register the behaviour of this signal is correct. When
accessing the low speed registers, glitches can occur on the DSACK0# pin before data gets
valid on the data bus. The plot of the oscilloscope shows such a glitch of the DSACK0# sig-
nal.

 9.2.1.2 Work-around

It is not necessary to use the DSACK0# signal if the data lines are evaluated after tCLDV.

If this data access timing is not supported by the micro controller, the glitch can be sup-
pressed by a capacitor between the DSACK0# pin and digital ground.

glitch
BOSCH - 80/84 - 17.11.03

Target Specification Rev. 1.3CC770
06

1.
2/

2.
3

-
15

.0
8.

97

 K
8/

E
IS

 -
 K

lo
se

-2
96

9
sp

ec
_e

rr
at

a.
fm
 9.2.2 Data corruption

 9.2.2.1 Description

This erratum is only relevant for applications which uses the 8-bit asynchronous non multi-
plexed address data bus interface (interface mode 3) of the CC770 to connect a micro con-
troller.

Invalid data may be read, depending on the actual phase between the rising edge of XTAL1
and the falling edge of CS#.

Note:

When CC770D and micro controller are supplied by different clock sources, their clock
phases are not fixed, even if the different clock sources have the same frequency.

 9.2.2.2 Work-around

Use other interface mode of CC770.
BOSCH - 81/84 - 17.11.03

Target Specification

BOSCH - 82/84 -

Rev. 1.3CC770

17.11.03

sp
ec

_i
nt

er
LO

F
.fm

 Figure 1: Block Diagram of CC770. 10

 Figure 2: Package Diagrams of CC770 . 12

 Figure 3: Time Segments of Bit Time . 36

 Figure 4: Bit Timing . 37

 Figure 5: CC770 handling of Message Objects 1-14 (Transmit) 54

 Figure 6: CC770 handling of Message Objects 1-14 (Direction = Receive) 55

 Figure 7: CPU Handling of Message Object 15 (Receive) 58

 Figure 8: Interconnection for serial communication . 60

 Figure 9: Serial data communication . 62

 Figure 10: CC770 SPI Interface Schematic . 63

 Figure 11: Timing for 8/16-Bit Multiplexed Intel Modes (Modes 0, 1) 67

 Figure 12: Ready Output Timing (write cycle, no previous write is pending) . . . 68

 Figure 13: Ready Output Timing (write cycle, previous write cycle is active) . . 68

 Figure 14: Ready Output Timing for a Read Cycle . 68

 Figure 15: Timing for 8-Bit Multiplexed Motorola Mode (Mode 2) 70

 Figure 16: Timing for 8-Bit Non-Mux Asynchronous Mode (Mode 3), read cycle. 73

 Figure 17: Timing for 8-Bit Non-Mux-Async Mode (Mode 3), write cycle. 73

 Figure 18: Timing for 8-Bit Non-Mux Synchronous Mode (Mode 3), read cycle. 75

 Figure 19: Timing for 8-Bit Non-Mux Synchronous Mode (Mode 3), write cycle. 75

 Figure 20: Timing for Serial Interface Mode (Polarity=0,Phase=0). 77

 Figure 21: Timing for Serial Interface Mode (Polarity=1,Phase=1). 77

 Figure 22: Input and output reference waveforms. 78

Target Specification

BOSCH - 83/84 -

Rev. 1.3CC770

17.11.03

sp
ec

_i
nt

er
LO

T
.fm

 Table 1: Pin description . 13

 Table 2: Multi Function Pins . 15

 Table 3: Reset values of CC770 registers . 16

 Table 4: Reset states of CC770 output pins . 17

 Table 5: CC770 address map . 19

 Table 6: Function of Power Down and Sleep bits . 26

 Table 7: Maximum MCLK frequency for various oscillator frequencies 27

 Table 8: Programming ClkOut . 33

 Table 9: Programming ClkOut slew rates . 33

 Table 10: Interrupt Register values with corresponding Interrupt Sources 41

 Table 11: Message Object Structure . 43

 Table 12: Representation of bit pairs in Control Registers 44

 Table 13: Bit combinations to start transmissions . 48

 Table 14: CPU Handling of Message Objects 1-14 (Transmit) 56

 Table 15: CPU Handling of Message Objects 1-14 (Receive) 57

 Table 16: CPU interface modes . 59

 Table 17: Absolute Maximum Ratings . 64

 Table 18: DC-Characteristics . 64

 Table 19: CLOCKOUT Specification . 65

 Table 20: A.C. Characteristics for 8/16-Bit Multiplexed Intel Modes (Modes 0, 1) 65

 Table 21: A.C. Characteristics for 8-Bit Multiplexed Motorola Mode (Mode 2) . . 69

 Table 22: A.C. Characteristics for 8-Bit Non-Mux Asynchronous (Mode 3) 71

 Table 23: A.C. Characteristics for 8-Bit Non-Mux Asynchronous (Mode 3) 74

 Table 24: A.C. Characteristics for Serial Interface Mode . 76

Target Specification

BOSCH - 84/84 -

Rev. 1.3CC770

17.11.03

06
1.

8/
2.

3
-

15
.0

8.
97

 K

8/
E

IS
 -

 K
lo

se
 -

 2
96

9
sp

ec
_a

pp
en

di
x.

fm

10. Appendix

10.1 Documentation of Changes

 10.1.1 Changes on Revisions

 10.1.1.1 Revision 1.0

Initial version.

 10.1.1.2 Revision 1.1

Specification left preliminary state.

Protection against ESD reduced to 800 V.

Timing parameters tCOPD and tCHCL are now categorized to C.

 10.1.1.3 Revision 1.2

Package Diagram now more detailed.

Clockout pin is active while reset is active, see chapter 3.2.2.

Flare clocking limitations, see chapter 4.4.1.

Behaviour of Serial Reset address, see chapter 4.16.

Mode0/1 Pins must be connected in any configuration, see note in chapter 7.1

fSPICLK must not be higher than fMCLK, see chapter 8.5.5.

Notes to the design steps B and C are not supported anymore.

 10.1.1.4 Revision 1.3

Add errata description for CC770 with stepping D.

Product number of package diagram modified.

EOF

spec_appendix.fm

	1. Introduction
	1.1 General Information
	1.2 General Data
	1.3 Features
	1.4 Functional Overview
	1.5 CC770 Block Diagram
	1.5.1 CAN Controller
	1.5.2 Intelligent Memory
	1.5.3 CPU Interface Logic
	1.5.4 Clockout
	1.5.5 Two 8-Bit Ports

	2. Package Diagram
	3. Product Description
	3.1 Pin Description (PLCC 44)
	3.2 Hardware Reset
	3.2.1 Reset values of CC770 registers
	3.2.2 Reset values of CC770 output pins

	3.3 Software Initialization
	3.4 Configuration of Bit Timing
	3.5 Silent Mode
	3.6 Low Current Modes

	4. Functional Description
	4.1 CC770 Address Map
	4.2 Control Register (00H)
	4.3 Status Register (01H)
	4.3.1 Status Interrupts

	4.4 CPU Interface Register (02H)
	4.4.1 Clocking Description

	4.5 High Speed Read Register (04+05H)
	4.5.1 Double Read Operation

	4.6 Global Mask - Standard Register (06-07H)
	4.7 Global Mask - Extended Register (08-0BH)
	4.8 Acceptance Filtering Implications
	4.9 Message 15 Mask Register (0C-0FH)
	4.10 ClkOut Register (1FH)
	4.11 Bus Configuration Register (2FH)
	4.12 Receive Error Counter (6FH)
	4.13 Transmit Error Counter (7FH)
	4.14 Bit Timing Registers
	4.14.1 Bit Timing Overview
	4.14.2 CC770 Bit Timing Definitions
	4.14.3 CC770 Bit Time Segments
	4.14.4 Calculation of the Bit Time
	4.14.5 Example for Bit Timing at high Baudrate
	4.14.6 Bit Timing Registers 0 + 1 (3FH + 4FH)

	4.15 Interrupt Register (5FH)
	4.16 Serial Reset Address (FFH)
	4.17 CC770 Message Objects (MO)
	4.17.1 Message Object Structure
	4.17.2 Control 0 + 1 Registers
	4.17.3 Handling of Message Objects
	4.17.4 Arbitration 0, 1, 2, 3 Registers
	4.17.5 Configuration Register
	4.17.6 Data Bytes

	4.18 Special Treatment of Message Object 15

	5. Port Registers
	5.1 Port 1 Registers
	5.2 Port 2 Registers

	6. FLOW DIAGRAMS
	6.1 CC770 handling of Message Objects 1-14 (Transmit)
	6.2 CC770 handling of Message Objects 1-14 (Receive)
	6.3 CPU Handling of Message Objects 1-14 (Transmit)
	6.4 CPU Handling of Message Objects 1-14 (Receive)
	6.5 CPU Handling of Message Object 15 (Receive)

	7. CPU Interface Logic
	7.1 CPU Interface Description
	7.2 Parallel Interfacing Techniques
	7.3 Serial Interface Techniques
	7.4 Serial Interface Protocol
	7.5 Serial Control Byte

	8. Electrical Specification
	8.1 Handling Instructions
	8.2 Absolute Maximum Ratings
	8.3 DC-Characteristics
	8.4 CLOCKOUT Specification
	8.5 A.C. Characteristics
	8.5.1 AC-Characteristics for 8/16-Bit Multiplexed Intel Modes (Modes 0, 1)
	8.5.2 A.C. Characteristics for 8-Bit Multiplexed Motorola Mode (Mode 2)
	8.5.3 A.C. Characteristics for 8-Bit Non-Multiplexed Asynchronous (Mode 3)
	8.5.4 A.C. Characteristics for 8-Bit Non-Multiplexed Synchronous (Mode 3)
	8.5.5 A.C. Characteristics for Serial Interface Mode
	8.5.6 Waveforms for testing

	9. Stepping specific errata
	9.1 Identification of affected devices
	9.1.0.1 PLCC44 package
	9.1.1 Chip on wafer

	9.2 Errata
	9.2.1 Glitches on DSACK0# pin
	9.2.1.1 Description
	9.2.1.2 Work-around

	9.2.2 Data corruption
	9.2.2.1 Description
	9.2.2.2 Work-around

	10. Appendix
	10.1 Documentation of Changes
	10.1.1 Changes on Revisions
	10.1.1.1 Revision 1.0
	10.1.1.2 Revision 1.1
	10.1.1.3 Revision 1.2
	10.1.1.4 Revision 1.3

